

0

Industrial & Commercial Catalogue

DEP02670120001		Catalogue Industrial & Commercial	
Rev.	Date	Changes	
0	01/03/2024	First issue: i-290 0240, 0250 new data Updated minimum water volumes i-290 0106/0127 Added "A" version for i-32V5 14, 16, 18 T and i-32V5 SL 16 T New GI/ GI3 hardware expansion modules + remote controls combination table ConnectBox catalogue Insertion Re-introduction of Calido product versions D Hydrofull catalogue Insertion Phase out HWA-A/FC Phase out OTA 1-AD, OTA-VHE Phase out CRR	
1	08/04/2024	Updated GWP i-290 range	
2	12/04/2024	Phase out CRB	

Index

Inverter Heat Pumps

R290

i-290 0106, 0109, 0112, 0115, 0118 0121, 0123, 0125, 0127	8
0240, 0250	12

R32

i-32V5 06A, 08A, 10, 10T, 12, 12T, 14, 14T A, 16, 16T A, 18T A	14
i-32V5 SL 08A, 12, 12T, 16, 16T A	16
i-32V5C MIDI 0121, 0126, 0128, 0132	20
i-32V5H MIDI 0121, 0126, 0128, 0132	22
i-HPV5H 0140, 0250, 0260, 0270	24

R410A

i-MAX 0466, 0475, 0485, 0695, 06105, 06115	26

Hybrid System

28

Controls

Connect Box	32
e-LITE	34
Hi-TV415	35
i-CR	36
Maxa DAS	37

DHW Heat Pump

Calido 110	38
Calido	40

Tanks, Boilers & Preparers

Aqua Speedy	42
Puffroller	43
B-Puffroller	44
Caddy	45
Barrel	46
Hybridroller	47
Hydrofull	48

Industrial Range - On/Off

R410A

HWA1-A - HWA1-A/H 0140÷0285	52
HWA1-A 02106÷04349	56
HWA1-A/H 02109÷04345	60
HWA-A 08365÷12599 HWA-A 12667÷121031	64
HWA-A/H 08365÷12599 HWA-A/H 12667÷121031	67

Industrial Hydronic

Controlli	70
Grimper Fan	72
VE & VE/MB	74
MI A 3	79
HCA1-HCA1/4	80
HCN	82
HCNA	87

Heat Recovery Units

OTA 1 micro E	91
OTA 1	92
OTA 1-P	94
OTA-RHP	96

Technology and Innovation for over 30 years

We design, manufacture and market heat pumps and air conditioning systems that will change the world. Maxa was born with this declaration of intent, a clear mission that still guides the spirit of the entire company today, more than 30 years after its foundation.

In 1992, Luciano Tredicesimo Ferroli, who had already led several successful entrepreneurial projects, founded what is now the largest heat pump production company on the Italian market.

Today led by his three sons: Paolo, David, Simone and his wife Elide, Maxa continues along the path indicated by its Founder. Environmental comfort, climate and the reduction of CO2 levels in the atmosphere are the result of the commitment that Maxa's 280 people spend every day to design and produce increasingly innovative and high-performance systems.

The Research and Development Team, from which our products are born, is made up of engineers, designers and laboratory researchers; a cohesive team of over 30 people whose mission is to develop and test new technological solutions, anticipating the increasing demands of the market.

Our range has solutions designed for residential, commercial, industrial and tertiary air conditioning. Thanks to continuous research and development of integrated products and solutions, we have one of the most comprehensive and competitive ranges in Europe. Our heat pumps currently range in sizes from 6 to 350 kW.

In 2023, we launch the new Maxa i-290 Range, which exploits the potential of the hydrocarbon R290, with very low global warming potential (GWP) and absolute top performance. One of the most complete ranges on the entire market, capable of achieving very high performance in heating, even at temperatures as low as -20°C.

The birth of our Made in Italy

Our story begins in 1957, the year in which our President, Luciano Tredicesimo Ferroli, founded his first company in the world of heating, designing and building boilers that were already innovative at the time. He was responsible for the development of the first highefficiency condensing boiler and several patents worldwide.

In 1973 he took his first steps towards the construction of air-conditioning machines for server rooms for mechanics and telephone centres, moving into the residential airconditioning sector in 1996, in its early days at the time.

From that date to the present day, Maxa has grown to become a leading Italian and international company, not only for its product ranges dedicated to residential and commercial airconditioning, but also for its Made in Italy production of highly efficient inverter heat pumps.

The company headquarters is located in Arcole, in the province of Verona, and houses, in addition to the offices, the warehouse for storing finished products and spare parts, as well as $7,800 \text{ m}^2$ for production. With 15 production lines, Maxa can satisfy every production demand for inverter heat pumps for both residential and industrial applications, as well as the wide range of water chillers up to 1,000 kW.

The latest generation climatic chamber with a maximum test power of up to 100 kW enables functional testing at full and partial loads according to EN14511 and EN14825, even at night and without an operator. A second chamber divided into 2 separately operable units, with a maximum test power of up to 800 kW, extends the testing capabilities of our products.

The company has also adopted the LEAN methodology in the production process with a consequent improvement in the component transport system through Milkrun and Kanban management for optimised component consumption management.

We can proudly claim to be a company capable of designing, developing and manufacturing heating and airconditioning products Made in Italy.

Made in **Italy**

Global Sustainability

Environmental protection, full sustainability and a focus on climate well-being and, more generally, on improving the quality of life are the values on which our way of acting and working is based. We want to take an active part in protecting the environment and the Earth, and we do this by translating our ideals into concrete actions.

This is why we continuously develop products that aim at energy saving, maximum efficiency, using environmentally friendly gases that reduce global warming as much as possible, and promote a careful recycling policy for components.

Use of sustainable energy for production

We introduced our ecological philosophy into the company as early as 2011 with the construction of an initial photovoltaic system, which was later expanded by utilising the space available at the car park shelters and on the roofs of our buildings. In this way, our energy needs are met with almost 350 kW of photovoltaic power.

Product Innovation

From 2019, we anticipated the use of the refrigerant gas R32 in our heat

pumps and air conditioners, a gas that later became a MUST for all other operators in the sector.

Subsequently, we introduced the natural refrigerant gas R290, which guarantees high energy performance (hot water up to 75°C) combined with maximum respect for the environment (ODP=0; GWP=3). And we will not stop there.

The continuous search for new technological solutions, combined with investments in the development of heat pump heating systems for homes and large areas, are part of the company's mission, which is completely oriented to maximise energy efficiency.

Component recycling

Complying with the RoHS 2002/95/ EC directive, which requires the prohibition and restriction of components using lead, mercury, cadmium and chromium.

Membership of the RIDOMUS air conditioning recycling consortium guarantees a careful recycling policy for household air conditioning components.

Maxa in Italy and the World

In 2005 Maxa expanded its activities outside its national borders, gaining immediate success thanks to the performance of its machines, capable of serving extremely hot and cold climates.

Today our product range is appreciated in over 40 countries, wherever there is a need for quality air conditioning, from residential to hotels, from hospitals to sports centres, from industries to shopping centres. With Subsidiaries and Partnerships of excellence in the rest of the world, Maxa punctually serves its Customers providing full technical and commercial support.

We are present in Italy with over 50 Agents and 300 Service Centres. To always and in any case put the customer at the centre.

New Heat Pumps Range with R290 gas

The widest in the market!

A unique solution for heating, cooling and hot water production with assured performance all year round.

- Sustainability, technology and reliability combined with an incomparable Made in Italy style.
- MAXA's i-290 heat pumps are designed to generate extremely high water temperatures even in the harshest conditions.

The range is distinguished by a unique design that integrates advanced technical solutions and modern aesthetics. With elegant lines and state-of-the-art

functionality, it combines energy efficiency with distinctive style, representing excellence in heating and cooling.

DESIGNED, REALIZED, GUARANTEED IN ITALY

The i-290 range is available in 11 sizes, with power outputs between 6 kW and 50 kW in heating mode.

Finally, the right heat pump solution for every system.

The i-290 range can be **perfectly and quickly integrated** both in new buildings and in combination with existing systems.

This makes it possible to satisfy with great efficiency both radiant floor systems, as well as traditional systems that exploit high-temperature water.

Environmental Sustainability

Thanks to the R290 technology, your system operates without the use of any fuel gas, ensuring efficient and sustainable operation **without any CO2 emissions** into the environment.

Unique and suitable for every need Numerous accessories and fittings allow the individual heat pump to be customised.

F

LIVE BETTER

AN ALACA

1.07

i-290

R290 Inverter heat pump monoblock

6 kW÷27 kW

The latest evolution of MAXA full inverter heat pump technology uses the environmentally friendly refrigerant gas R290. This new evolutionary step further simplifies the construction of fully heat pump systems.

In fact, thanks to the 78° maximum water temperature achievable by the i-290 range, application on systems requiring high flow temperatures is also very simple.

Finally, the direct replacement of existing systems, which previously operated with combustion appliances, is very manageable.

Technical Features

- Proprietary control system with microcontroller control, overheating control logic via electronic expansion valve.
- Compressors. Twin Rotary/Scroll DC inverter.
- Fans. Axial type with brushless DC motor.
- Source heat exchanger. Optimised with a finned coil circuit, copper tubes and aluminium fins with hydrophilic treatment (0106/0118).
- AISI 304 stainless steel brazed plate heat exchanger with low pressure drop on the water side.
- Refrigeration circuit made of copper piping, includes: condensation control, electronic thermostatic valve, reversing valve, high pressure switch, liquid separator, liquid receiver (sizes 0112-0127 only), pressure tap, bidirectional metal mesh filters, high and low pressure transducers.
- Integrated hydraulic circuit with high-efficiency brushless circulator with variable speed, flowmeter, deaerator with air vent valve (loose accessories for sizes 0106-0118), overpressure valve (3 bar:0106-0118 - 6 bar:0121-0127), system filling and draining tap.

Logic and Controls:

- All units can operate in 3 different modes: heating, cooling and DHW, with specific programming to optimise performance in all conditions, with possible management of the climatic curve.
- All units of the i-290 series are equipped with a wired control for complete control of the heat pump, model e-LITE.
- The i-290 series units are able to manage mixing valves, diverter valves and secondary-side circulator; they are also able to control the solar thermal system, possible integration with external heat sources, and integration with external Home/ Building automation or Home Automation systems. ModBus available as standard for sizes 0106-0118. Modbus available as "CM" access for other sizes.
- The i-290 series is equipped with an innovative remote control that, once connected to the heat pump, allows complete control.
- Various accessories are also available for connection to the wi-fi network (CONNECT-BOX) or for controlling cascade systems (HI-TV415).

Common accessories

AG CONNECT BOX** EXOGEL FD FY GI3** Hi-TV415 ** Accessories that ca	Anti-vibration kit Gateway Heat Pump Communication and Maxa Connect Frost protection Dirt separator filter Y-filter External hardware extension module Remote Touch Screen Display mot be used simultaneously	KA KA3 RP SAS TR2	Heat exchanger resistance + base Base resistance Battery protection grilles Remote plant probe - Sanitary storage probe Cu/Al battery with anti-corrosion treatment
Specific accesso	ories for sizes 106 to 118	VDIS2	Three-way diverter valve for hot water production in sanitary thermal storage.
Specific accessories for sizes 121 to 127			
VDIS3	Three-way diverter valve for hot water production in sanitary thermal storage.	СМ	Provision of Modbus connectivity

	Dimen	sions	0106	0109	0112	0115	0118	0121	0123	0125	0127	
	L	mm	1105	1105	1105	1105	1105	1610	1610	1610	1610	
	Ρ	mm	490	490	490	490	490	710	710	710	710	
	Н	mm	870	870	1440	1440	1440	1270	1270	1270	1270	
P												

i-290		0106	0109	0112	0115	0118	0121	0123	0125	0127
Cooling										
Cooling capacity (1)	kW	5,8* / 5,4	9,2* / 8,6	11,2* / 10,7	13,5* / 12,4	14,3* / 13,8	17,4	18,9	19,8	22,3
Power input (1)	kW	2,0	2,8	3,8	3,7	4,3	5,26	5,89	6,19	7,19
EER (1)	W/W	2,8	3,1	2,6	3,4	3,2	3,31	3,21	3,20	3,10
Cooling capacity (2)	kW	6,2* / 5,62	9,9* / 9,15	13,3* / 12,57	14,4* / 12,90	14,8* / 13,94	19,6	21,0	25,3	27,9
Power input (2)	kW	1,25	1,93	2,83	2,40	2,69	4,02	4,38	5,32	6,43
EER (2)	W/W	4,49	4,74	4,44	5,37	5,18	4,88	4,79	4,76	4,34
SEER (5)	W/W	4,8	5,4	4,7	5,0	5,0	5,27	5,27	4,94	4,84
Water flow rate (1)	L/s	0,3	0,4	0,5	0,6	0,7	0,83	0,90	0,95	1,07
Useful head (1)	kPa	66	57	81	80	74	128	121	128	117
Heating										
Heating capacity (3)	kW	6,9* / 6,24	10,4* / 9,69	13,7* / 12,60	17,7* / 16,33	19,84* / 18,72	21,0	22,8	24,8	27,0
Power input (3)	kW	1,31	2,05	2,61	3,30	4,05	4,31	4,78	5,37	6,21
COP (3)	W/W	4,76	4,72	4,83	4,94	4,62	4,87	4,77	4,62	4,35
Heating capacity (4)	kW	6,4* 6,0	9,75* 9,1	12,77* 11,6	17,69* 15,2	18,7* 17,4	19,6	21,6	23,2	26,3
Power input (4)	kW	1,9	2,9	3,6	4,5	5,3	6,13	6,79	7,66	8,74
COP (4)	W/W	3,1	3,2	3,2	3,4	3,3	3,20	3,18	3,03	3,01
Heating capacity (11)	kW	6,41* / 5,9	9,81* / 9,1	13,08* / 12,0	16,64* / 14,7	17,7* / 16,7	19,7	21,2	24,1	25,8
Power input (11)	kW	2,3	3,4	4,6	5,2	6,0	7,38	7,97	9,56	10,3
COP (11)	W/W	2,6	2,7	2,6	2,8	2,8	2,67	2,66	2,52	2,50
SCOP (6)	W/W	4,7	5,2	4,9	4,9	4,8	4,75	4,72	4,49	4,46
Water flow rate (3)	L/s	0,3	0,4	0,6	0,8	0,9	0,59	0,65	0,69	0,79
Useful head (3)	kPa	63	52	79	68	60	150	146	149	142
Energy efficiency (Water 35°C / 65°C)		A+++ A++	A+++ A+++		A+++ A++		A+++ A++			
Compressor										
Туре			Twi	n Rotary DC Inv	verter			Scroll DC	Inverter	
Compressors	n°	1	1	1	1	1	1	1	1	1
Refrigerant circuits	n°	1	1	1	1	1	1	1	1	1
R290 refrigerant quantity (7)	kg	0,43	0,75	1,00	1,27	1,27	1,7	1,7	2,1	2,1
Hydraulic circuit										
Plumbing fittings	inch			1"M				1" 1/	4 M	
Minimum water volume (8)	L	65	95	125	155	155	175	175	220	225
Noise level										
Sound power (9)	dB(A)	57	58	59	62	62	64	64	65	65
Sound pressure at 1m distance (10)	dB(A)	42	43	44	47	47	48	48	49	49
Electrical data										
Power supply			230V/1/50Hz				400V/3P+N	+T/50Hz		
Maximum power input	kW	3	4	5	8	8	11	11	13	13
Maximum input current	А	14	21	26	16	16	19	19	21	21
Weight										
Shipping weight	kg	117	119	170	188	188	276	276	285	285
* Performance referring to the followin (1) Cooling: outdoor air temperature 35	g conditions 5°C: in/out w	s: vater temperature	12/7°C.		(8) Calculated for minutes.	r a decrease in syst	tem water tempe	erature of 10°C w	rith a defrost cyc	le lasting 6

* Performance referring to the following conditions:
(1) Cooling: outdoor air temperature 35°C; in/out water temperature 12/7°C.
(2) Cooling: outdoor air temperature 35°C; in/out water temperature 23/18°C.
(3) Heating: outdoor air temperature 7°C db 6°C db; in/out water temperature 30/35°C.
(4) Heating: outdoor air temperature 7°C db 6°C db; in/out water temperature 47/55°C.
(5) Cooling: low temperature, variable output, fixed flow rate.
(6) Heating: average climatic conditions; Tbiv=-7°C; low temperature, variable output, fixed flow rate.
(7) Indicative data subject to changes. For the correct value, always refer to the technical label on the unit the unit.

(9) Sound power: heating mode according to EN 12102:2022; value determined on the basis of mea-surements made in accordance with UNI EN ISO 9614-1, in compliance with Eurovent certification (10) Sound pressure: value calculated from the sound power level using the standard ISO 3744:2010 at a distance of 1 m.
(11) Heating: outdoor air temperature 7°C db 6°C db; in/out water temperature 55/65°C.
(*) by activating the maximum Hz function

i-290

Tandem scroll inverter heat pumps air/water with EC axial fan

40 kW÷50 kW

The i-290 0240 and 0250 sizes represent the latest evolution in MAXA full inverter heat pump technology. In fact, using the environmentally friendly refrigerant gas R290, it is possible to take the latest evolutionary step that further simplifies the construction of fully heat pump systems.

In fact, thanks to reaching a maximum temperature of 78°, direct application on systems requiring high flow temperatures is also very easy.

Technical Features

- Proprietary control system with microcontroller control, overheating control logic via electronic expansion valve.
- Compressors. Scroll DC inverter with tandem operation.
- Fans. Axial type with brushless DC motor.
- Heat exchanger source. Optimised with a finned coil circuit, copper tubes and aluminium fins with hydrophilic treatment. AISI 304 stainless steel brazed plate user exchanger with reduced water-side pressure drop.
- Refrigeration circuit made of copper tube, includes: 4-way cycle reversing valve, electronic expansion valve, liquid separator, liquid receiver, safety device (high pressure switch), pressure transducers, filter dehydrator, liquid flow and moisture indicator.
- The suction pipe is thermally insulated with flexible, closed-cell
 elastomeric foam.
- Hydraulic circuit including: plate heat exchanger, protection flow switch, safety valve (6 bar) to be connected to a collection system and manual air vent valve.

On request (optional) further components such as a tank and circulation pump can be installed on the machine.

Logic and Controls

- All units can operate in 3 different modes: heating, cooling and DHW, with specific programming that exalts performance in all conditions, with possible management of the climatic curve.
- The i-290 series units are able to manage mixing valves, diverter valves and secondary-side circulator; they are also able to control the solar thermal system, possible integration with external heat sources, and integration with external Home/ Building automation or Home Automation systems.
- The i-290 0240-0250 series is fully controllable via the onboard display..
- In addition, various accessories are available for remote control (e-LITE) or connection to the wi-fi network (CONNECT-BOX) or control of cascade systems (HI-TV415).

Accessories

GL	Wooden cage packing	PS	Single pump AC
GL	Wooden cage packing (with SI acc.)	PSEC	Single pump EC
IM	Interruttori magnetotermici	PSEC-SI	Single pump EC and inertial tank
KA1	Heat exchanger + pump (if on board)	PSI	Inverter modulated single pump AC
	electrical heaters	PSI-SI	Inverter modulated single pump AC and
RP	Protection module		inertial tank
TR2	Cu/Al battery with anti-corrosion	PS-SI	Single pump AC and inertial tank
СМ	Modbus communication module	SL	Silencing
KA1	Heat exchanger + pump	SSL	Super silencing (Sl included)
	(if on board) electrical heaters		

Loose accessories

AG	Anti-vibration kit	SAS	Remote plant probe - Sanitary storage
CONNECT BOX**	* Gateway Heat Pump Communication and		probe
	Maxa Connect	TR2	Cu/Al battery with anti-corrosion
e-LITE	Multifunctional remote control system	RV	Grooved Joint Connection
FY	Y-filter	VDIS4	Three-way diverter valve for hot water
GI3**	External hardware extension module		production in sanitary thermal storage
Hi-TV415	Remote Touch Screen Display		
RP	Battery protection grilles		

** Accessories that cannot be used simultaneously

Dimensions	0240	0250	
L	mm	1850	1850
L (with tank)	mm	2460	2460
Р	mm	1110	1110
Н	mm	1920	1920
H (SSL)	mm	1980	1980

Spaces of	f respect	0240-0250
A1	mm	1200
A2	mm	1000
B1	mm	1500
B2	mm	1500

i-290		0240	0250
Cooling			
Cooling capacity (1)	kW	28,9	34,1
Power input (1)	kW	9,20	11,0
EER (1)	W/W	3,14	3,10
Cooling capacity (2)	kW	34,5	37,0
Power input (2)	kW	8,10	8,53
EER (2)	W/W	4,26	4,34
SEER (5)	W/W	4,86	4,80
Nater flow rate (1)	L/s	1,38	1,63
Heating			
Heating capacity (3)	kW	40,1	50,0
Power input (3)	kW	9,8	11,9
COP (3)	W/W	4,10	4,20
Heating capacity (4)	kW	38,0	47,9
Power input (4)	kW	13,1	16,5
COP (4)	W/W	2,90	2,90
Heating capacity (11)	kW	38,4	45,8
Power input (11)	kW	16,0	18,8
COP (11)	W/W	2,40	2,44
SCOP (6)	W/W	4,09	4,20
Water flow rate (3)	L/s	1,14	1,43
Energy efficiency (Water 35°C / 65°C)		A	.++
Compressor			
Гуре		Scroll D	C Inverter
Compressors	n°	2	2
Refrigerant circuits	n°	1	1
R290 Refrigerant quantity (7)	kg	3,15	3,50
Hydraulic circuit			
Plumbing fittings (grooved)	inch	1" 1/2	(DN 40)
Vinimum water volume (8)	L	365	415
Noise level			
Sound power (9)	dB(A)	82	83
Sound pressure at 1m distance (10)	dB(A)	64	65
Electrical data			
Power supply		400V/3P+	+N+T/50Hz
Maximum power input	kW	23	27
Maximum input current	А	37	44
Weight			
Shipping weight	kg	510	525
⁵ Performance referring to the following conditions:	(8) Calc	ulated for a decrease in system water temp	perature of 10°C with a defrost cycle lasting 6

* Performance referring to the following conditions:
(1) Cooling: outdoor air temperature 35°C; in/out water temperature 12/7°C.
(2) Cooling: outdoor air temperature 35°C; in/out water temperature 23/18°C.
(3) Heating: outdoor air temperature 7°C db 6°C db; in/out water temperature 30/35°C.
(4) Heating: outdoor air temperature 7°C db 6°C db; in/out water temperature 47/55°C.

(6) Heating: low temperature, variable output, fixed flow rate.
 (6) Heating: average climatic conditions; Tbiv=-7°C; low temperature, variable output, fixed flow

 (9) Sound power: heating mode according to EN 12102:2022; value determined on the basis of measurements made in accordance with UNI EN ISO 9614-1, in compliance with Eurovent certification requirements. (10) Sound pressure: value calculated from the sound power level using the standard ISO 3744:2010 at a distance of 1 m. (11) Heating: outdoor air temperature 7°C db 6°C db; in/out water temperature 55/65°C.

(7) Indicative data subject to changes. For the correct value, always refer to the technical label on the unit.

МЛХЛ

i–32V5 Inverter monoblock heat pump

6 kW÷18 kW

11 models: the most compact and the best performing of the market!

The inverter technology employement together with DC brushless motors ensures higher global energetic efficiency of equipment also thanks to high and effective modulating power. The employement extension to all components gives the COP and EER improvement and a substantial increase of partial loads efficiency.

Technical Features

- Customized control system with microcontroller regulation, overheating control logic with electronic expansion valve.
- DC inverter compressors: twin-rotary Dc Inverter.
- Ventilation: DC inverter with axial fan
- Source exchanger: optimized circuit with finned coil, copper pipes and hydrophilic aluminum fins.
- Users exchanger: a brazed plate type in stainless steel AISI 304 with reduced pressure drop on the water side.
- Refrigerant circuit is made with copper pipes and includes: condensing control, electronic expansion valve, reversing valve 4 ways, high pressure switch, separator and liquid receiver, valves for maintenance and control, high and low pressure transducers.
- Integral hydraulic system: pump with high efficiency brushless circulator, flow switch, air valve, pressure relief valve (6 bar), pressure gauge, water valve for system charge/discharge.

Logic and Controls

- All units can works in three different modes: heating, cooling and DHW, with specific programs that enhance the performance in all conditions, with possible management of the temperature curve.
- The V5 series units are able to handle mixing valves, diverter and circulatory secondary side; They are also able to control the solar thermal system, the eventual integration with external heat sources, and integration with external systems Home Building automation or Domotic. All i-32V5 series is controllable remotely (accessory HI-TV415).
- Modbus RS485 protocol as standard

The i-32V5 KA models with integrated defrosting kit "KA" has the same performance and technical data, in order to they have the same Eurovent HP Keymark certification.

Accessories

AG CONNECT BOX*	Vibration damper kit * Gateway Heat Pump Communication and	i-CR KA	Remote wall controller Anti-frost heater on base and plate heat
	Maxa Connect		exchanger
EXOGEL	Frost protection	SAS	DHW probe / Sanitary water probe
FD	Dirt separator filter	SPS	Solar panel probe
GI *	Internal hardware extension module	TR2	Anti-corrosion treatment
GI3**	External hardware extension module	VDIS2	Three-way diverter valve for hot
Hi-TV415	Multifunctioning touch screen		water production in sanitary
	remote control		thermal storage

* Factory mounted accessory available only for sizes 10-10T-12-12T-14-16

** Accessories that cannot be used simultaneously

Versions			
i-32V5	Reversible heat pump	i-32V5/KA	Reversible heat pump with integrated defrosting kit

O, CERTIFIED

	Dime	nsions	06A	08A	10	10T	12	12T	14	14T
	L	mm	918	918	1.047	1.047	1.047	1.047	1.044	1.044
	Ρ	mm	394	394	455	455	455	455	455	455
	Н	mm	830	830	936	936	936	936	1.409	1.409

P

i-32V5		06A	08A	10	10T	12	12T	14	14T A	16	16T A	18T A
Cooling												
Cooling capacity (1)	kW	5,7* / 5,2	6,7* / 6,1	8,3* / 7,5	8,3* / 7,5	9,4* / 8,5	9,4* / 8,5	12,1* / 11,5	12,1* / 11,5	14,5* / 13,8	14,5* / 13,8	15,8* / 15,04
Power input (1)	kW	1,6	2,0	2,4	2,4	2,8	2,8	3,5	3,5	4,4	4,4	4,9
EER (1)	W/W	3,2	3,1	3,2	3,2	3,1	3,1	3,3	3,3	3,2	3,2	3,1
Cooling capacity (2)	kW	6,7*/6,4	8,7* / 8,0	10,4* / 9,5	10,4* / 9,5	12,8* / 11,6	12,8* / 11,6	14,7* / 14,0	14,7*/ 14,0	16,6* / 15,8	16,6* / 15,8	18,0* / 17,1
Power input (2)	kW	1,3	1,8	2,2	2,2	2,8	2,8	2,6	2,6	3,2	3,2	3,6
EER (2)	W/W	4,9	4,5	4,4	4,4	4,2	4,2	5,4	5,4	5,0	5,0	4,8
SEER (5)	W/W	4,4	4,5	4,3	4,3	4,4	4,4	4,8	4,8	4,9	4,9	5,1
Water flow (1)	L/s	0,3	0,3	0,4	0,4	0,4	0,4	0,6	0,6	0,7	0,7	0,7
Available pressure (1)	kPa	75,0	71,0	68,9	68,9	63,4	63,4	75,0	75,0	62,3	62,3	55,6
Heating												
Heating capacity (3)	kW	7,5* / 6,1	9,4* / 7,8	11,6* / 10,1	11,6* / 10,1	13,6* / 11,8	13,6* / 11,8	15,2* / 14,1	15,2* / 14,1	17,6* / 16,3	17,6* /16,3	19,3* / 17,9
Power input (3)	kW	1,3	1,7	2,3	2,3	2,7	2,7	2,9	2,9	3,5	3,5	4,1
COP (3)	W/W	4,9	4,6	4,4	4,4	4,3	4,3	4,9	4,9	4,7	4,7	4,4
Heating capacity (4)	kW	7,0*/6,0	9.0*/7,7	11,2* / 9,76	11,2* / 9,8	13,2* / 11,5	13,2* / 11,5	14,6*/ 13,6	14,6* / 13,6	17,0* / 15,8	17,0* / 15,8	18,7* / 17,3
Power input (4)	kW	1,6	2,1	2,8	2,8	3,3	3,3	3,6	3,6	4,2	4,2	4,9
COP (4)	W/W	3,8	3,7	3,5	3,5	3,4	3,4	3,8	3,8	3,7	3,7	3,5
SCOP (6)		4,5	4,5	4,5	4,5	4,5	4,5	4,5	4,5	4,5	4,5	4,5
Water flow (3)	L/s	0,3	0,4	0,5	0,5	0,6	0,6	0,7	0,7	0,8	0,8	0,8
Available pressure (3)	kPa	73,0	65,5	55,2	55,2	43,4	43,4	63,6	63,6	48,5	48,5	37,3
Energy efficiency (Water 35°C / 55°C)		A+++/A++	A+++/A++	A+++/A++	A+++/A++	A+++/A++	A+++/A++	A+++/A++	A+++/A++	A+++/A++	A+++/A++	A+++/A++
Compressor												
Туре						Twin	Rotary DC Ir	iverter				
Compressors	n°	1	1	1	1	1	1	1	1	1	1	1
Refrigerant circuits	n°	1	1	1	1	1	1	1	1	1	1	1
Refrigerant charge (7)	kg	0,97	0,97	2,5	2,5	2,5	2,5	3,2	3,2	3,5	3,5	3,5
Hydraulic circuit												
Water connections	inch	1"M	1"M	1"M	1"M	1"M	1"M	1"M	1"M	1"M	1"M	1"M
Min. water volume (8)	L	40	40	50	50	60	60	60	60	70	70	70
Sound level					_							
Sound power Lw (9)	dB(A)	64	64	64	64	65	65	68	68	68	68	68
Sound pressure at 1 m distance Lp1 (10)	dB(A)	62	62	62	62	62	62	66	66	66	66	66
Electrical data										-		
Power supply			230V/1/50H	Z	400V 3/50Hz	230V 1/50Hz	400V/3P +N+T/50Hz	230V/1/50Hz	400V/3P +N+T/50Hz	230V 1/50Hz	400 +N+T	V/3P /50Hz
Max. power input	kW	3,4	4,1	4,6	4,6	5,1	5,1	6,6	6,6	7,0	7,0	8,3
Max. current input	Α	15,5	18,7	20,2	6,6	22,1	7,3	28,6	9,5	30,4	10,1	12,0
Weight												
Gross weight	kg	77	77	110	110	110	110	134	148	140	154	154
Operation weight	kg	66	66	96	96	96	96	121	136	126	141	141

Operating conditions: (1) Cooling: Outdoor air temperature 35°C; inlet/outlet water temperature 12/7°C. (2) Cooling: Outdoor air temperature 35°C; inlet/outlet water temperature 23/18°C. (3) Heating: Outdoor air temperature 7°C DB 6°C WB; inlet/outlet water temperature 30/35°C. (4) Heating: Outdoor air temperature 7°C DB 6°C WB; inlet/outlet temperature 40/45°C. (5) Cooling: Water temperature inlet/outlet 12/7°C. (6) Heating: in average climate condition; Tbiv=-7°C; water temperature inlet/outlet 30/35°C. (7) The data are only indicative and subject to change. For the correct data, refer to the technical label sticked on the unit

label sticked on the unit.

(8) Calculated for a decrease of the water temperature of the plant with 10°C with a defrosting cycle of 6 minutes.

(9) Sound power heating mode condition (3); the value is determined respecting the measurements taken in accordance with the regulations UNI EN ISO 9614-2, in compliant with the Eurovent certification.

(10) Sound pressure level obtained with internal measurements made in accordance with ISO 3744, at 1 m distance..
 (*) by activating the maximum Hz function

16

1.044

455

1.409

16T

1.044

455

1.409

18T

1.044

455

1.409

i–32V5 SL Silenced Inverter monoblock

heat pump

8 kW÷16 kW

5 models: low noise guaranteed with only 53 dB(A) Extreme Silence

The introduction of rules concerning not only the energy efficiency of heating equipment but also the noise level of the same requires a constant evolution of the products. The new SL series of the i-32V5 range represents the ideal combination of high efficiency, extreme quietness and the usual reliability. Thanks to a complete software and hardware reorganization of the well tested i-32V5 has allowed to reach the best levels of silence and makes this i-32V5SL series perfectly compliant with the most stringent national and international standards.

Technical Features

- Customized control system with microcontroller regulation, overheating control logic with electronic expansion valve.
- DC inverter compressors: twin-rotary Dc Inverter.
- Ventilation: DC inverter with axial fan
- Source exchanger: optimized circuit with finned coil, copper pipes and hydrophilic aluminum fins.
- Users exchanger: a brazed plate type in stainless steel AISI 304 with reduced pressure drop on the water side.
- Refrigerant circuit: is made with copper pipes and includes: condensing control, electronic expansion valve, reversing valve 4 ways, high/low pressure switch, separator and liquid receiver, valves for maintenance and control, double-inlet pressure, high and low pressure transducers.
- Integral hydraulic system: pump with high efficiency brushless circulator, expansion tank, flow switch, air valve, pressure relief

valve (6 bar), pressure gauge, water valve for system charge/ discharge.

Logic and Controls

- All units can works in three different modes: heating, cooling and DHW, with specific programs that enhance the performance in all conditions, with possible management of the temperature curve.
- The V5 series units are able to handle mixing valves, diverter and circulatory secondary side; They are also able to control the solar thermal system, the eventual integration with external heat sources, and integration with external systems Home Building automation or Domotic. All i-32V5 series is controllable remotely (accessory HI-TV415).
- Modbus RS485 protocol as standard

Accessories

AG	Vibration damper kit	i-CR	Remote wall controller
CONNECT BOX*	Maxa Connect	КА	exchanger
EXOGEL	Frost protection	SAS	DHW probe / Sanitary water probe
FD	Dirt separator filter	SPS	Solar panel probe
GI **	Internal hardware extension module	TR2	Anti-corrosion treatment
GI3 Hi-TV415	External hardware extension module Multifunctioning touch screen remote control	VDIS2	Three-way diverter valve for hot water production in sanitary thermal storage

* Factory mounted accessory available only for sizes 10-10T-12-12T-14-16 ** Accessories that cannot be used simultaneously

i-32V5SL/KA Silenced reversible heat pump with integrated defrosting kit

Silenced reversible heat pump

Versions i-32V5SL

Ļ	Dime	nsions	08A	12	12T	16	16T A
	L	mm	918	1047	1047	1044	1044
ľ	Ρ	mm	394	466	466	448	448
J	Н	mm	830	936	936	1409	1409

i-32V5SL		08A	12	12T	16	16T A
Cooling						
Cooling capacity (1)	kW	6,7* / 6,1	9,4* / 8,5	9,4* / 8,5	14,5* / 13,8	14,5* / 13,8
Power input (1)	kW	2,0	2,8	2,8	4,4	4,4
EER (1)	W/W	3,1	3,1	3,1	3,2	3,2
Cooling capacity (2)	kW	8,8* / 8,0	12,8* / 11,6	12,8* / 11,6	16,6* / 15,8	16,6* / 15,8
Power input (2)	kW	1,8	2,8	2,8	3,2	3,2
EER (2)	W/W	4,5	4,2	4,2	5,0	5,0
SEER (5)	W/W	4,5	4,4	4,4	4,9	4,9
Water flow (1)	L/s	0,3	0,4	0,4	0,7	0,7
Available pressure (1)	kPa	71,0	63,4	63,4	62,3	62,3
Heating						
Heating capacity (3)	kW	9,4* / 4,8	13,6* / 7,4	13,6* / 7,4	17,6* / 8,7	17,6* / 8,7
Power input (3)	kW	1,0	1,5	1,5	1,7	1,7
COP (3)	W/W	5,0	4,8	4,8	5,2	5,2
Heating capacity (4)	kW	9,0* / 4,7	13,2* / 7,14	13,2* / 7,1	17,0* / 8,4	17,0* / 8,4
Power input (4)	kW	1,2	1,9	1,9	2,0	2,0
COP (4)	W/W	3,9	3,9	3,9	4,1	4,1
SCOP (6)		4,6	4,5	4,5	4,5	4,5
Water flow (3)	L/s	0,2	0,3	0,3	0,4	0,4
Available pressure (3)	kPa	65,5	70,9	70,9	87,4	87,4
Energy efficiency (Water 35°C / 55°C)		A+++/A++	A+++/A++	A+++/A++	A+++/A++	A+++/A++
Compressor						
Туре				Twin Rotary		
Compressors	n°	1	1	1	1	1
Refrigerant circuits	n°	1	1	1	1	1
Refrigerant charge(7)	kg	0,97	2,5	2,5	3,5	3,5
Hydraulic circuit						
Water connections	inch	1"M	1"M	1"M	1"M	1"M
Min. water volume (8)	L	40	60	60	70	70
Sound level						
Sound power Lw (9)	dB(A)	53	53	53	53	53
Sound pressure at 1 m distance Lp1 (10)	dB(A)	38,8	38,4	38,4	37,7	37,7
Electrical data						
Power supply		230V/1/50Hz	230V/1/50Hz	400V/3P +N+T/50Hz	230V/1/50Hz	400V/3P +N+T/50Hz
Max. power input	kW	4,1	5,1	5,1	7,0	7,0
Max. current input	A	18,7	22,1	7,3	30,4	10,1
Weight						
Gross weight	kg	77	110	110	140	154
Operation weight	kg	66	96	96	126	141

Operating conditions:

Operating conditions: (1) Cooling: Outdoor air temperature 35°C; inlet/outlet water temperature 12/7°C. (2) Cooling: Outdoor air temperature 35°C; inlet/outlet water temperature 23/18°C. (3) Heating: Outdoor air temperature 7°C DB 6°C WB; inlet/outlet water temperature 30/35°C. (4) Heating: Outdoor air temperature 7°C DB 6°C WB; inlet/outlet temperature 40/45°C. (5) Cooling: Water temperature inlet/outlet 12/7°C. (6) Heating: in average climate condition; Tbiv=-7°C; water temperature inlet/outlet 30/35°C. (7) The data are only indicative and subject to change. For the correct data, refer to the technical label sticked on the unit sticked on the unit.

(8) Calculated for a decrease of the water temperature of the plant with 10°C with a defrosting cycle of 6 minutes.

(9) Sound power heating mode condition (3); the value is determined respecting the measurements taken in accordance with the regulations UNI EN ISO 9614-2, in compliant with the Eurovent certification.

(10) Sound pressure level obtained with internal measurements made in accordance with ISO (10) Sound pressure reverobtained with integration 3744, at 1 m distance.(*) by activating the maximum Hz function

ACT Technical storage for hot water and chilled water

50-75-95 L

The technical accumulation called ACT consists of a cylindrical tank in a horizontal position, available in three different capacities. The tank is thermally insulated so that it can operate with both hot and cold water and is equipped with hydraulic connections positioned in order to promote a homogeneous flow inside the entire tank. The ACT accumulation is closed with a supporting frame and with powder-coated metal sheet panels of the same colour as the i-32V5 series units. The supply includes both the fastening screws between the heat pump and the ACT chassis and the adjustable feet for levelling the assembly. Some accessories are available such as: different sizes of electrical resistors equipped with its own electrical panel, the expansion tank and the EXOGEL valve.

Building Features

- Free standing horizontal inertial puffer with 50, 75 and 95 liters capacity.
- One encumbrance dimensions for all sizes.
- Solid hardware to support i-32V5 units
- · Dampers between inertial puffer and heat pump as standard
- Insulation panel in polyester fiber of thickness 50 mm
- Finishing with Polyolefin-foam adhesive of 3 mm thick
- Possibility of installing and expansion tank 18 I (optional)
- Discharge valve included as standard
- N. 1 flexible for the connection of the inertial puffer to the heat pump as standard.
- Tank anti-corrosion painting .

- EDILFIBER insulation; new concept of thermal insulation, made of polyester fiber with the characteristic of being mainly produced from differentiated urban recycle waste (PET bottles collection) and therefor strongly respecting the environment.
- Metal sheets polyurethane powder painting
- Possibility of installing electric heaters from 1.2 (single phase) 2, 3 to 4.5 kW single and three-phase (optional).
- 18l expansion vessel (optional, factory installed).
- 2, 3, 4.5kW electrical heaters, available in single and three phases, managed as integration and/or replacement with double security level with automatic and manual reset thermostat to protect user and plant (optional, factory installed).
- Kit Exogel, mechanical valve saves machinery from freezing.

Insulating panel

Variation of the total height (A)	Dimensions (A)		Min
as a function of the supporters regulation	i-32V5 04-06-08	mm	1270
	i-32V5 10-12	mm	1.400
	i-32V5 14-14T-16-16T-18T	mm	1.900

ACT		50	75	95
Useful capacity	L	50	75	95
Insulation thickness	mm		50	
Thermal conductivity coefficient	W/mK		0,04	
Max operating temperature	°C		95	
Max working pressure	bar		б	
Maximum test pressure	bar		3	
Empty weight	kg	60	65	69
Operating weight	kg	110	140	165
Dimensions	mm		1360x466x504 (527)	

Exogel Kit - Frost protection It protects the appliance and the plant from damage caused by an unexpected cooling of the working temperature of the technical water near the freezing point by evacuating the system.

i-32V5C Midi

Inverter monoblock chiller

21 kW÷32 kW

Compressor

DC inverter compressor are of the hermetic rotary type, expressly designed for operation with R32, equipped with thermal protection and mounted on rubber vibration dampers.

User-Side Heat Exchanger

Grade AISI 304 stainless steel brazed plate heat exchanger coated with black closed-cell flexible elastomeric foam.

Structure

Structure consisting of profiles and panels in hot-dip galvanized steel sheet and polyester powder coated, color RAL 7035 peeled weather resistant.

Source-Side Heat Exchanger

The air exchangers are made entirely of aluminium with the microchannel technology.

Fan

DC inverter axial-type fans are mounted, featuring aerofoil blades. They are statically and dynamically balanced.

Refrigerant Circuit

- Dehydrator filter;
- Shut-off valve on the liquid line;
- Liquid flow and humidity indicator;
- Electronic expansion valve;
- Service couplers;

- High pressure safety pressure switches;
- High-and low-pressure transducers;

Standard Components

- Electronic circulator
 EEV electronic expansion valve
- Liquid indicator
- Water side safety valve
- Drain cock
- Flow switch (flow presence signal)
- Remote on / off dry contact
- Dynamic set point
- Three-phase relay for sequence / lack monitoring
- Fan speed regulator (ECM fans)
- 2nd set point

Electrical Panel And Control

Entirely made and wired in conformity to the IEC 60335-2-40.

Accessories

CMModbus communication moduleKA1DSDesuperheater partial heat recovery unitRPDSFRSequence control device, phase failure + Minimum and Maximum voltage relayTR1GIInternal hardware extension moduleSLIMProtection moduleSL	Heat exchanger adhesive resistance Metallic guards for condenser Micro-channel coil with Aero surface treatment Silenced version
---	--

Loose accessories

e-LITE	Multifunctional remote control system	FY	Y-strainer
Hi-TV415	Remote Touch Screen Display	i-CR	Remote wall controller
CONNECT BOX	Gateway Heat Pump Communication and	SAS	Remote plant probe - Sanitary storage
AG FD	Anti-vibration kit Dirt separator filter	VDIS3	probe Three-way diverter valve for hot water production in sanitary thermal storage

Versions i-32V5C Midi i-32V5C-DS Midi

Standard version chiller Chiller with desuperheater i-32V5C-BT Midi

BT version chiller (for low water temperatures)

52436 831

Spaces of	f respect	0121-0126	0128-0132	Dimen	sions	0121	0126	0128	0132
A1	mm	1500	1500	L	mm	1600	1600	1600	1600
A2	mm	400	400	Р	mm	680	680	680	680
B1	mm	400	400	Н	mm	1315	1315	1315	1315
B2	mm	700	700						

i-32V5C Midi		0121	0126	0128	0132
Cooling					
Cooling capacity (1)	kW	24,7* / 20,7	27,1* / 25,8	30,8* / 28,1	32,8* / 31,8
Power input (1)	kW	5,9	8,0	8,2	10,2
EER (1)	W/W	3,5	3,2	3,4	3,1
Cooling capacity (2)	kW	24,7* / 21,6	27,4* / 25,5	31,9* / 28,4	34,3* / 32,8
Power input (2)	kW	4,3	5,3	5,8	7,1
EER (2)	W/W	5,0	4,8	4,9	4,6
SEER (3)	W/W	5,2	5,1	5,4	5,1
Water flow (1)	L/s	1,0	1,2	1,3	1,5
Hydronic circuit side load losses (1)	kPa	37,5	53,1	39,2	47,8
Compressor					
Туре			Twin Rotary	/ DC Inverter	
Compressors	n°	1	1	1	1
Refrigerant circuits	n°	1	1	1	1
Refrigerant (R32)	kg	1,8	1,8	2,2	2,2
Cooling quantity in tonnes of CO2 equivalent	ton	1,22	1,22	1,49	1,49
Fan					
Туре			DC Bru	ushless	
Number	N°	1	1	1	1
Nominal air flow (1)	m³/h	8091	8407	12873	12836
Hydronic heat exchanger					
Туре		Plate	Plate	Plate	Plate
Number	N°	1	1	1	1
Hydraulic circuit					
Water connections	inch	1"	1"	1"1/4	1"1/4
Water quantity	L	2,4	2,4	3,4	3,4
Minimum water volume	L	110	110	110	110
Sound level					
Sound power (Lw)	dB(A)	73	74	75	76
Sound power SL version (Lw)	dB(A)	69	70	71	72
Electrical data					
Power supply			400V/3P+	N+T/50Hz	
Max. power input	kW	9,88	10,3	11,1	11,7
Max. current input	А	19,0	19,7	20,9	21,9
Weight					
Gross weight	kg	215	215	225	225
Net weight	kg	205	205	215	215

Performance referred to the following conditions: (1) Cooling: outdoor air temperature 35 ° C; water temperature in / out 12/7 ° C. (2) Cooling: outdoor air temperature 35 ° C; water temperature in / out 23/18 ° C (3) Cooling: inlet / outlet water temperature 12/7 ° C. (*) by activating the maximum Hz function

i-32V5H Midi

Inverter monoblock heat pump

21 kW÷32 kW

Compressor

DC inverter compressor are of the hermetic rotary type, expressly designed for operation with R32, equipped with thermal protection and mounted on rubber vibration dampers.

User-Side Heat Exchanger

Grade AISI 304 stainless steel brazed plate heat exchanger coated with black closed-cell flexible elastomeric foam.

Structure

Structure suitable for outdoor installation consisting of high-thickness profiles made of hop-dip galvanised steel sheets coated with polyester powder, coated with RAL 7035 bush-hammered finish resistant to weathering.

Source-Side Heat Exchanger

The air-cooled heat exchangers are made with copper pipes and aluminium fins.

Electrical Panel And Control

Entirely made and wired in conformity to the IEC 60335-2-40.

Fan

Axial-type fans are mounted, featuring aerofoil blades. They are statically and dynamically balanced and supplied with a protection grille and air inlet and outlet nozzle with double-flared profile, specially shaped to boost efficiency and reduce noise. The electric motor is modulated with EC brushless motor, directly coupled, and equipped with an integrated thermal protection device. The motor has an IP 54 protection rating in accordance with the CEI

Accessories

EN 60529 standard.

- Standard Components Electronic circulator
- EEV electronic expansion valve
- Liquid indicator
- Water side safety valve
- Drain cock
- Flow switch (flow presence signal) Remote on / off dry contact
- .
- Dynamic set point
- Three-phase relay for sequence / lack monitoring •
- Fan speed regulator (ECM fans)
- 2nd set point

CM	Modbus communication module	КА	Plate heat exchanger + basament
DSFR	Sequence control device, phase failure +	RP	Metallic guards for condenser
GI	Minimum and Maximum voltage relay Internal hardware extension module	TR2	Cu / Al coil with Silver Line anti-corrosion treatment
IM	Protection module	SL	Silenced version
Loose acce	essories		

e-LITE	Multifunctional remote control system	FY	Y-strainer
Hi-TV415	Remote Touch Screen Display	i-CR	Remote wall controller
CONNECT BOX	Gateway Heat Pump Communication and	SAS	Remote plant probe - Sanitary storage
	Maxa Connect		probe
AG	Anti-vibration kit	VDIS3	Three-way diverter valve for hot water
FD	Dirt separator filter		production in sanitary thermal storage

Versions

i-32V5H Midi

i-32V5H-DS Midi

Standard version reversible heat pump Reversible heat pump with desuperheater

i-32V5H-BT Midi

BT version reversible heat pump (for low water temperatures)

Spaces o	f respect	0121-0126	0128-0132	Dimen	sions	0121	0126	0128	0132
A1	mm	1500	1500	L	mm	1600	1600	1600	1600
A2	mm	400	400	Р	mm	640	640	640	640
B1	mm	400	400	Н	mm	1315	1315	1315	1315
B2	mm	700	700						

i-32V5H Midi		0121	0126	0128	0132
Cooling					
Cooling capacity (1)	kW	18,0* / 17,7	22,7* / 18,7	25,0* / 24,2	27,5* / 26,0
Power input (1)	kW	5,9	6,2	8,0	8,7
EER (1)	W/W	3,0	3,0	3,0	3,0
Cooling capacity (2)	kW	25,1* / 22,0	27,7* / 25,8	30,8* / 29,0	32,7* / 31,4
Power input (2)	kW	4,4	5,5	6,4	7,1
EER (2)	W/W	5,0	4,7	4,6	4,4
SEER (3)	W/W	4,4	4,6	4,8	4,8
Water flow (1)	L/s	0,8	0,9	1,2	1,2
Hydronic circuit side load losses (1)	kPa	32,5	34,5	31,2	34,2
Heating					
Heating capacity (3)	kW	25,2* / 21,3	27,3* / 26,0	31,4* / 28,0	33,9* / 32,1
Power input (3)	kW	4,9	6,4	6,4	7,9
COP (3)	W/W	4,3	4,0	4,4	4,1
Heating capacity (4)	kW	25,2* / 21,2	27,6* / 25,8	30,7* / 28,3	34,5* / 32,7
Power input (4)	kW	6,4	7,9	8,2	9,9
COP (4)	W/W	3,3	3,3	3,5	3,3
SCOP (6)	W/W	4,2	4,0	4,3	4,0
Water flow (1)	L/s	1,0	1,2	1,4	1,6
Use side heat exchanger load losses (4)	kPa	37,9	53,1	41,4	50,6
Energy efficiency (Water 35°C / 55°C)	Class	A++/A+	A++/A+	A++/A++	A++/A+
Compressor					
Туре			Twin Rota	ry DC Inverter	
Compressors	n°	1	1	1	1
Refrigerant circuits	n°	1	1	1	1
Refrigerant (R32)	kg	4,3	4,3	5,1	5,1
Cooling quantity in tonnes of CO2 equivalent	ton	2,90	2,90	3,44	3,44
Fan					
Туре			DC B	rushless	
Number	N°	1	1	1	1
Nominal air flow (1)	m³/h	10769	10847	12209	13202
Hydronic heat exchanger					
Туре		Plate	Plate	Plate	Plate
Number	N°	1	1	1	1
Hydraulic circuit					
Water connections	inch	1"	1"	1"1/4	1"1/4
Water quantity	L	2,4	2,4	3,4	3,4
Minimum water volume	L	110	110	110	110
Sound level					
Sound power (Lw)	dB(A)	72	74	75	76
Sound power SL version (Lw)	dB(A)	68	70	71	72
Electrical data					
Power supply			400V/3P	+N+T/50Hz	
Max. power input	kW	12,3	12,3	14,7	14,7
Max. current input	Α	22,9	22,9	26,8	26,8
Weight					
Gross weight	kg	250	250	265	265
Net weight (*)	kg	240	240	255	255
Performance referred to the following conditions:			(4) Heating: external air temper	ature 7°Cdb 6°Cbu in / c	ut water temp 40/45 ° C

(1) Cooling: outdoor air temperature 35 ° C; water temperature in / out 12/7 ° C.
(2) Cooling: outdoor air temperature 35 ° C; water temperature in / out 23/18 ° C
(3) Heating: external air temperature 7 ° C d.b. 6 ° C b.u.; in / out water temp. 30/35 ° C.

(4) Heaung: external air temperature 7 ° C d.b. 6 ° C b.u .; in / out water temp. 40/45 ° (5) Cooling: inlet / outlet water temperature 12/7 ° C. (6) Heating: average climatic conditions; Tbiv = -7 ° C; in / out water temp. 30/35 ° C. (*) by activating the maximum Hz function

i-HPV5H

Air/water inverter heat pumps with axial fan

40 kW÷70 kW

Compressors

DC inverter compressor are of the hermetic scroll type expressaly designed for operation with gas R32.

Structure

Structure suitable for outdoor installation consisting of high-thickness profiles made of hop-dip galvanised steel sheets coated with polyester powder, coated with RAL 7035 bush-hammered finish.

User-Side Heat Exchanger

Grade AISI 304 stainless steel brazed plate heat exchanger coated with black closed-cell flexible elastomeric foam.

Source-Side Heat Exchanger

The air exchangers are made of copper pipes and aluminum fins. The tubes are mechanically expanded into the aluminum fins to increase the heat exchange factor.

Fan Section

The fan is axial type with wing profile blades. The electric motor used and controlled in modulation with brushless EC motor.

Refrigerant Circuit

It includes:

- Dehydrator filter;
- Shut-off valve on the liquid line;
- Liquid flow and humidity indicator;
- Electronic expansion valve;
- Service couplers;
- High pressure safety pressure switches;
- High- and low-pressure transducers;
- 4-way valve
- Receiver and liquid separator
- Non-return valves

Electric Panel And Control

Entirely made and wired in conformity to the IEC 60335-2-40 The power section includes:

- Isolation transformer for powering the control devices;
- Thermal protection fuses for compressor drivers, EC fan and pump Driver;
- Automatic switch for protecting the compressors (optional);
- Drivers for modulating compressor control;
- Phase sequence control relay;
- Phase sequence control relay with minimum/maximum voltage
- invertion calibration (optional);
- Thermostatic ventilation inside electrical cabinet;
- Plant management module (optional or for the versions that require it)
- Interface terminal with alphanumerical display;
- Visualisation function for the set values, analogue inputs, fault codes, alarm log and parameter index;
- On/off and alarm reset buttons;
- Button combinations for forcing defrosting and for forcing pump to maximum power;
- Unit switch-on management from local or remote source;
- Configuration for Modbus connectivity (CM accessory).

Main accessories

DS BT C	Desuperheater partial heat recovery unit Unit for low water temperatures (BT) Ductable unit	PSEC PSEC-SI PSI PSI	Single pump EC Single pump EC and inertial tank Inverter modulated single pump AC
C (S)	insonorization	PSI-SI	Inverter modulated single pump AC and
DS	Desuperheater partial heat recovery unit		inertial tank
PD	Double pump AC (includes the GI	SL	Silenced unit
	accessory)	SSL	Super-silenced unit
PD-SI	Double pump AC and inertial tank (includes the GI accessory)	VDIS4	Three-way diverter valve for hot water production in sanitary thermal storage
PS	Single pump AC		

Versions

i-HPV5H

Reversible heat pump

Dimensions	;	0140	0250	0260	0270	Spaces of	respect	0140	0250	0260	0270
L	mm	1850	1850	1850	1850	A1	mm	1200	1200	1200	1200
L (with tank)	mm	2460	2460	2460	2460	A2	mm	1000	1000	1000	1000
Р	mm	1110	1110	1110	1110	B1	mm	1000	1500	1500	1500
Н	mm	1920	1920	1920	1920	B2	mm	1500	1500	1500	1500
H (SSL)	mm	1980	1980	1980	1980						

I-HPV5H -P5/P5I/PD		0140	0250	0260	0270
Cooling					
Cooling capacity (1)	kW	33,1* / 29,6	41,2* / 36,3	53,1* / 48	58,2* / 53,2
Power input (1)	kW	9,54	11,7	15,5	17,7
EER (1)	W/W	3,1	3,1	3,1	3,0
Cooling capacity (2)	kW	42,4* / 37,3	62,3* / 55,3	71,8* / 65,3	73,8* / 66
Power input (2)	kW	8,9	13	15,5	16,6
EER (2)	W/W	4,2	4,3	4,2	4,0
SEER (5)	W/W	4,8	4,7	4,9	4,8
Water flow (1)	L/s	1,4	1,7	2,3	2,6
Available head (1)	kPa	146	138	155	151
Heating					
Heating capacity (3)	kW	44,3* / 40	56,3* / 50,2	66* / 61,4	74,6* / 66,8
Power input (3)	kW	9,8	12,2	15	16,3
COP (3)	W/W	4,1	4,1	4,1	4,1
Heating capacity (4)	kW	43,6* / 40,6	55,9* / 49,7	64,2* / 59,5	75,5* / 66,6
Power input (4)	kW	12,5	15,4	18,3	20,4
COP (4)	W/W	3,3	3,23	3,3	3,3
SCOP (6)	W/W	4,3	4,16	3,9	3,9
Energy Efficiency (water 35°C / 55°C)	Classe	A++ / A++	A++ / A+	A++ / A+	A++ / A+
Water flow (1)	L/s	1,9	2,4	2,9	3,2
Available head (4)	kPa	125	109	130	122
Compressor					
Туре		Scroll DC Inverter	Scroll DC Inverter	Scroll DC Inverter	Scroll DC Inverter
Compressors	n°	1	2	2	2
Refrigerant circuits	n°	1	1	1	1
Refrigerant		R32	R32	R32	R32
Refrigerant charge R32	kg	6,5	8,5	11,7	12,00
Refrigerant charge R32 Cooling quantity in tonnes of C02 equivalent	kg ton	6,5 4,4	8,5 5,7	11,7 7,9	12,00 8,1
Refrigerant charge R32 Cooling quantity in tonnes of CO2 equivalent Fan	kg ton	6,5 4,4	8,5 5,7	11,7 7,9	12,00 8,1
Refrigerant charge R32 Cooling quantity in tonnes of CO2 equivalent Fan Nominal air flow	kg ton L/s	6,5 4,4 4368	8,5 5,7 5431	11,7 7,9 6417	12,00 8,1 5547
Refrigerant charge R32 Cooling quantity in tonnes of C02 equivalent Fan Nominal air flow Hydraulic circuit	kg ton L/s	6,5 4,4 4368	8,5 5,7 5431	11,7 7,9 6417	12,00 8,1 5547
Refrigerant charge R32 Cooling quantity in tonnes of C02 equivalent Fan Nominal air flow Hydraulic circuit Water flow (1)	kg ton L/s L/s	6,5 4,4 4368 1,42	8,5 5,7 5431 1,74	11,7 7,9 6417 2,30	12,00 8,1 5547 2,55
Refrigerant charge R32 Cooling quantity in tonnes of CO2 equivalent Fan Nominal air flow Hydraulic circuit Water flow (1) Water connections	kg ton L/s L/s inch	6,5 4,4 4368 1,42 1" 1/2 (DN 40)	8,5 5,7 5431 1,74 1" 1/2 (DN 40)	11,7 7,9 6417 2,30 1" 1/2 (DN 40)	12,00 8,1 5547 2,55 1" 1/2 (DN 40)
Refrigerant charge R32 Cooling quantity in tonnes of C02 equivalent Fan Nominal air flow Hydraulic circuit Water flow (1) Water connections Max pressure hydronic side	kg ton L/s L/s inch bar	6,5 4,4 4368 1,42 1" 1/2 (DN 40) 6	8,5 5,7 5431 1,74 1" 1/2 (DN 40) 6	11,7 7,9 6417 2,30 1" 1/2 (DN 40) 6	12,00 8,1 5547 2,55 1" 1/2 (DN 40) 6
Refrigerant charge R32 Cooling quantity in tonnes of C02 equivalent Fan Nominal air flow Hydraulic circuit Water flow (1) Water connections Max pressure hydronic side Minimum water volume	kg ton L/s L/s inch bar L	6,5 4,4 4368 1,42 1" 1/2 (DN 40) 6 286	8,5 5,7 5431 1,74 1" 1/2 (DN 40) 6 389	11,7 7,9 6417 2,30 1" 1/2 (DN 40) 6 490	12,00 8,1 5547 2,55 1" 1/2 (DN 40) 6 522
Refrigerant charge R32 Cooling quantity in tonnes of C02 equivalent Fan Nominal air flow Hydraulic circuit Water flow (1) Water connections Max pressure hydronic side Minimum water volume Noise level	kg ton L/s L/s inch bar L	6,5 4,4 4368 1,42 1" 1/2 (DN 40) 6 286	8,5 5,7 5431 1,74 1" 1/2 (DN 40) 6 389	11,7 7,9 6417 2,30 1" 1/2 (DN 40) 6 490	12,00 8,1 55547 2,55 1" 1/2 (DN 40) 6 522
Refrigerant charge R32 Cooling quantity in tonnes of C02 equivalent Fan Nominal air flow Hydraulic circuit Water flow (1) Water connections Max pressure hydronic side Minimum water volume Noise level Sound power Lw (9)	kg ton L/s L/s inch bar L dB(A)	6,5 4,4 4368 1,42 1,42 1" 1/2 (DN 40) 6 286 77	8,5 5,7 5431 1,74 1" 1/2 (DN 40) 6 389 83	11,7 7,9 6417 2,30 1" 1/2 (DN 40) 6 490 84	12,00 8,1 5547 2,55 1" 1/2 (DN 40) 6 522 84
Refrigerant charge R32 Cooling quantity in tonnes of CO2 equivalent Fan Nominal air flow Hydraulic circuit Water flow (1) Water connections Max pressure hydronic side Minimum water volume Noise level Sound power Lw (9) Sound power Lw configur. SL (9)	kg ton L/s L/s inch bar L dB(A) dB(A)	6,5 4,4 4368 1,42 1,42 1" 1/2 (DN 40) 6 286 777 76	8,5 5,7 5431 1,74 1" 1/2 (DN 40) 6 389 83 83 82	11,7 7,9 6417 2,30 1" 1/2 (DN 40) 6 490 84 84 83	12,00 8,1 5547 2,55 1" 1/2 (DN 40) 6 522 84 84 83
Refrigerant charge R32 Cooling quantity in tonnes of C02 equivalent Fan Nominal air flow Hydraulic circuit Water flow (1) Water connections Max pressure hydronic side Minimum water volume Noise level Sound power Lw (9) Sound power Lw configur. SL (9) Sound power Lw configur. SSL (9)	kg ton L/s L/s inch bar L U dB(A) dB(A) dB(A)	6,5 4,4 4368 1,42 1" 1/2 (DN 40) 6 286 77 76 76 75	8,5 5,7 5431 1,74 1,74 1" 1/2 (DN 40) 6 389 83 83 82 81	11,7 7,9 6417 2,30 1" 1/2 (DN 40) 6 490 84 83 83 82	12,00 8,1 5547 2,55 1" 1/2 (DN 40) 6 522 84 83 83 82
Refrigerant charge R32 Cooling quantity in tonnes of C02 equivalent Fan Nominal air flow Hydraulic circuit Water flow (1) Water connections Max pressure hydronic side Minimum water volume Noise level Sound power Lw (9) Sound power Lw configur. SL (9) Electrical data	kg ton L/s L/s inch bar L dB(A) dB(A) dB(A)	6,5 4,4 4368 1,42 1" 1,42 1" 1,42 (DN 40) 6 286 77 76 76 75	8,5 5,7 5431 1,74 1" 1/2 (DN 40) 6 389 83 83 82 81	11,7 7,9 6417 2,30 1" 1/2 (DN 40) 6 490 84 83 83 82	12,00 8,1 5547 2,55 1" 1/2 (DN 40) 6 522 84 83 83 82
Refrigerant charge R32 Cooling quantity in tonnes of C02 equivalent Fan Nominal air flow Hydraulic circuit Water flow (1) Water connections Max pressure hydronic side Minimum water volume Noise level Sound power Lw (9) Sound power Lw configur. SL (9) Sound power Lw configur. SSL (9) Electrical data Power supply	kg ton L/s inch bar L dB(A) dB(A) dB(A)	6,5 4,4 4368 1,42 1,42 1,42 1,42 0,40 4,00 4,00 4,00 4,00 4,00 4,00 4	8,5 5,7 5431 1,74 1" 1/2 (DN 40) 6 389 83 83 82 81 400V/3P+N+T/50Hz	11,7 7,9 6417 2,30 1" 1/2 (DN 40) 6 490 84 83 83 82 400V/3P+N+T/50Hz	12,00 8,1 5547 2,55 1" 1/2 (DN 40) 6 522 84 84 83 82 400V/3P+N+T/50Hz
Refrigerant charge R32 Cooling quantity in tonnes of CO2 equivalent Fan Nominal air flow Hydraulic circuit Water flow (1) Water connections Max pressure hydronic side Minimum water volume Noise level Sound power Lw (9) Sound power Lw (9) Sound power Lw configur. SL (9) Electrical data Power supply Max. power input	kg ton L/s inch bar L dB(A) dB(A) dB(A)	6,5 4,4 4368 1,42 1,42 1,42 1,42 0,0 4,0 1,42 0,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0	8,5 5,7 5431 1,74 1" 1/2 (DN 40) 6 389 83 82 83 82 81 400V/3P+N+T/50Hz 33	11,7 7,9 6417 2,30 1" 1/2 (DN 40) 6 490 84 83 82 82 400V/3P+N+T/50Hz 39	12,00 8,1 5547 2,55 1" 1/2 (DN 40) 6 522 84 83 82 82 400V/3P+N+T/50Hz 43
Refrigerant charge R32 Cooling quantity in tonnes of C02 equivalent Fan Nominal air flow Hydraulic circuit Water flow (1) Water connections Max pressure hydronic side Minimum water volume Noise level Sound power Lw (9) Sound power Lw configur. SL (9) Sound power Lw configur. SSL (9) Electrical data Power supply Max. power input Max. current input	kg ton L/s L/s inch bar L dB(A) dB(A) dB(A) dB(A)	6,5 4,4 4368 1,42 1,42 1,42 1,42 0,40 286 286 286 77 76 75 75 400V/3P+N+T/50Hz 24 38	8,5 5,7 5431 1,74 1" 1/2 (DN 40) 6 389 83 83 82 81 400V/3P+N+T/50Hz 33 52	11,7 7,9 6417 2,30 1" 1/2 (DN 40) 6 490 84 83 82 82 400V/3P+N+T/50Hz 39 62	12,00 8,1 5547 2,55 1" 1/2 (DN 40) 6 522 84 83 83 82 400V/3P+N+T/50Hz 43 68
Refrigerant charge R32 Cooling quantity in tonnes of C02 equivalent Fan Nominal air flow Hydraulic circuit Water flow (1) Water connections Max pressure hydronic side Minimum water volume Noise level Sound power Lw configur. SL (9) Sound power Lw configur. SSL (9) Electrical data Power supply Max. power input Max. current input Weight	kg ton L/s inch bar L dB(A) dB(A) dB(A) dB(A)	6,5 4,4 4368 1,42 1" 1,42 1" 1,42 0 (DN 40) 6 286 286 77 76 75 75 400V/3P+N+T/50Hz 24 38	8,5 5,7 5431 1,74 1" 1/2 (DN 40) 6 389 83 83 82 81 400V/3P+N+T/50Hz 33 52	11,7 7,9 6417 2,30 1" 1/2 (DN 40) 6 490 84 83 82 82 400V/3P+N+T/50Hz 39 62	12,00 8,1 5547 2,55 1" 1/2 (DN 40) 6 522 84 83 82 400V/3P+N+T/50Hz 43 68
Refrigerant charge R32 Cooling quantity in tonnes of C02 equivalent Fan Nominal air flow Hydraulic circuit Water flow (1) Water connections Max pressure hydronic side Minimum water volume Noise level Sound power Lw (9) Sound power Lw configur. SL (9) Sound power Lw configur. SSL (9) Electrical data Power supply Max. power input Max. current input Weight Net weight (**)	kg ton L/s inch bar L U dB(A) dB(A) dB(A) dB(A) dB(A) kW A	6,5 4,4 4368 1,42 1,42 1,42 1,42 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4	8,5 5,7 5431 1,74 1,74 1,74 0 0 6 389 83 83 82 83 82 81 400V/3P+N+T/50Hz 33 52	11,7 7,9 6417 2,30 1" 1/2 (DN 40) 6 490 84 84 83 82 400V/3P+N+T/50Hz 39 62 560	12,00 8,1 5547 2,55 1" 1/2 (DN 40) 6 522 84 83 82 82 400V/3P+N+T/50Hz 43 68
Refrigerant charge R32 Cooling quantity in tonnes of C02 equivalent Fan Nominal air flow Hydraulic circuit Water flow (1) Water connections Max pressure hydronic side Minimum water volume Noise level Sound power Lw (9) Sound power Lw (9) Sound power Lw configur. SL (9) Sound power Lw configur. SSL (9) Electrical data Power supply Max. power input Max. current input Weight Net weight (**) Hydronic kit (Optional)	kg ton L/s inch bar L dB(A) dB(A) dB(A) dB(A) kW A	6,5 4,4 4368 1,42 1,42 1,42 1,42 0,00 6 286 286 286 77 76 75 75 400V/3P+N+T/50Hz 24 38	8,5 5,7 5431 1,74 1" 1/2 (DN 40) 6 389 83 82 83 82 81 400V/3P+N+T/50Hz 33 52 540	11,7 7,9 6417 2,30 1" 1/2 (DN 40) 6 490 84 83 82 400V/3P+N+T/50Hz 39 62 560	12,00 8,1 5547 2,55 1" 1/2 (DN 40) 6 5222 84 83 82 400V/3P+N+T/50Hz 43 68
Refrigerant charge R32 Cooling quantity in tonnes of C02 equivalent Fan Nominal air flow Hydraulic circuit Water flow (1) Water connections Max pressure hydronic side Minimum water volume Noise level Sound power Lw (9) Sound power Lw (9) Sound power Lw configur. SL (9) Sound power Lw configur. SSL (9) Electrical data Power supply Max. power input Max. current input Weight Net weight (**) Hydronic kit (Optional) Tank volume	kg ton L/s L/s inch bar L dB(A) dB(A) dB(A) dB(A) dB(A) dB(A) kW A kg	6,5 4,4 4368 1,42 1" 1,42 1" 1,42 0 400 6 286 286 286 77 76 75 75 400V/3P+N+T/50Hz 24 38 38 400	8,5 5,7 5431 1,74 1"1/2 (DN 40) 6 389 83 82 83 82 81 400V/3P+N+T/50Hz 33 52 540	11,7 7,9 6417 2,30 1" 1/2 (DN 40) 6 490 84 83 82 400V/3P+N+T/50Hz 39 62 560 400	12,00 8,1 5547 2,55 1" 1/2 (DN 40) 6 522 84 83 82 400V/3P+N+T/50Hz 43 68 600 400

Data referred to the following condition:
(1) Cooling: outdoor air temperature 35°C; in/out water temperature 12/7°C.
(2) Cooling: outdoor air temperature 35°C; in/out water temperature. 23/18°C.
(3) Heating: outdoor air temperature 7°C b.s. 6°C b.u.; in/out water temperature 30/35°C.
(4) Heating: outdoor air temperature 7°C b.s. 6°C b.u.; in/out water temperature 40/45°C.
(5) Cooling: in/out water temperature 7/12°C.
(6) Heating: Average climatic conditions; Tbir=-7°C; low temperature.

(9) Sound power: condition (3); value determined on the basis of measurements made in accordance with UNI EN ISO 9614-2, in compilance with the requirements of Eurovent certification.
N.B. Performance data are indicative and are subject to change. Furthermore the performance declared in points (1), (2), (3), and (4) is intended to refer to instantaneous power according to UNI EN 14511. The value declared in point (5) and (6) is determined according to UNI EN 14825.
(*) by activating the maximum Hz function
(**) For data relating to other versions, refer to the technical manual

i-MAX

Air/water inverter heat pumps with axial fan

66 kW÷115 kW

Carpentry

Made up of hot-galvanized sheet painted metal.

Compressors

The compressors are a scroll type, mounted on a rubber material acting as a shock absorber. Each one of the two circuits is equipped with a DC inverter compressor. In this way, the capacity of each circuit can be modulated continuously between the minimum capacity of a single inverter compressor and the sum of the maximum capacities of the whole compressors of the same circuit.

User Side Heat Exchanger

The employed user side heat exchanger is made up of AISI 304 stainless steel braze-welded plates type integrating a dual cooling circuit.

Air Side Heat Exchanger

The air side heat exchanger is made up of copper pipes and aluminum fins.

Fan Section

The type of the fan is axial-flow with aluminum aerofoil blades of fibre. The electric fan motor used in this series is modulated by inverter.

Refrigerant Circuit

The refrigerant circuit has been manufactured by means of international primary brands components and according to the UNI EN 13134 Rule concerning welding procedures. The refrigerant gas is R410A. Each refrigerant circuit includes 4 way reverse cycle valve, electronic expansion valve, liquid separator, liquid receivers, auxiliary circuit to reduce the defrosting time, oil recovery circuit, non-return valves, valves of inspection for maintenance and control, safety device (high pressure switch) according to PED regulation, pressure transducers, precision sensors, high capacity filter dryer, mechanical filters.

Electric Panel

The electric panel is manufactured according to the actual European Union rules and it contains all the electromechanical and electronic components of regulation and control. The terminal board in the electric panel is supplied with voltage free contacts for: remote ON-OFF, winter/summer commutation, domestic hot water temperature sensor, and for the remote control panel. The addition of the GI optional module allows further management of the plant.

Hydraulic Circuit

i-MAX

Includes: dual refrigerant circuit plate heat exchanger and a single hydraulic circuit, a pressure gauge at the inlet and a fitting on the heat exchanger outlet for evaluating the load losses, service valve and flow switch for protection, automatic air release valve and safety valve (6 bar).

Main accessories

AG	Rubber shock absorbers
CI6	AC inverter pump (GI module included)
CI7	AC ntegrated pump
СМ	Modbus interface RS485 activation
DSFR	Sequence control device, phase failure +
	Minimum and Maximum voltage relay
GI	Internal hardware extension module
HiT2	Multifunction touch screen remote
	controller

i-CR	Remote wall controller
IM	Protection module
КА	Antifreeze kit
SL	Silencing
SSL	Super Silencing
TR2	Anti-corrosion treatment

Reversible heat pump

Versions

Dimensions		0466	0475	0485	0695	06105	06115
L	mm	2.250	2.250	2.250	2.250	2.250	2.250
Р	mm	1.170	1.170	1.170	1.170	1.450	1.450
Н	mm	1.985	1.985	1.985	1.985	2.010	2.010

i-MAX		0466	0475	0485	0695	06105	06115
Cooling							l l
Cooling capacity (1)	kW	65,6	74,6	83,9	94,7	105,6	114,3
Power input (1)	kW	22,6	25,7	28,8	32,7	36,2	39,4
EER (1)	W/W	2,9	2,9	2,91	2,9	2,9	2,9
Cooling capacity (2)	kW	79,6	90,2	102,8	113,3	127,3	139,3
Power input (2)	kW	21,8	24,6	28,2	31,0	34,9	38,2
EER (2)	W/W	3,7	3,7	3,7	3,7	3,7	3,7
SEER (5)	W/W	3,8	3,9	3,8	3,8	3,8	3,8
Water flow (1)	L/s	3,1	3,6	4,0	4,5	5,1	5,5
Pressure drop (1)	kPa	32	36	37	34	33	38
Heating							
Heating capacity (3)	kW	68,4	74,7	85,6	93,3	102,5	111,5
Power input (3)	kW	16,9	18,4	21,1	23,9	25,3	28,6
COP (3)	W/W	4,1	4,1	4,1	3,9	4,1	3,9
Heating capacity (4)	kW	65,9	71,0	82,1	88,6	97,1	108,3
Power input (4)	kW	20,5	22,2	25,7	27,7	30,4	36,1
COP (4)	W/W	3,2	3,2	3,2	3,2	3,2	3,0
SCOP (6)	W/W	3,6	3,6	3,5	3,6	3,6	3,5
Water flow (4)	L/s	3,2	3,4	3,9	4,2	4,7	5,2
Use side heat exchanger load losses (4)	kPa	30	31	31	32	27	27
Energy efficiency (Water 35°C/55°C)	Clas- se	A+/A+	A+/A+	A+/A+	A+/A+	A+/A+	A++/A+
Compressor	_		_	-		-	
Туре		Scroll	Scroll	Scroll	Scroll	Scroll	Scroll
Compressors	n°	4	4	4	6	6	6
Refrigerant circuits	n°	2	2	2	2	2	2
Refrigerant charge R410A (7)	kg	13,4	14,2	14,3	13,4	14,2	14,3
Fan						_	
Nominal air flow	m³/s	6,5x2	7x2	7,5x2	8x2	8,5x2	9x2
Hydraulic circuit							
Max pressure hydronic kit	bar	6	6	6	6	6	6
Water connections	inch	2" 1/2	2" 1/2	2" 1/2	2" 1/2	2" 1/2	2" 1/2
Min. water volume (8)	L	200	200	200	260	260	260
Sound level							
Sound power (9)	dB(A)	84 / SL 82,0 / SSL 81,2	84 / SL 82,5 / SSL 81,7	85 / SL 83,0 / SSL 82,2	85 / SL 83,2 / SSL 82,7	85 / SL 83,2/ SSL 82,7	86 / SL 83,7 / SSL 83,2
Sound pressure (10)	dB(A)	52,2	52,2	53,2	53,2	53,2	54,2
Electrical data			_	-			
Power supply		400V/3P+N+T/50Hz	400V/3P+N+T/50Hz	400V/3P+N+T/50Hz	400V/3P+N+T/50Hz	400V/3P+N+T/50Hz	400V/3P+N+T/50Hz
Max. power input	kW	39,9	42,3	46,7	52,3	55,8	63,0
Max. current input	Α	60,1	63,5	70,3	78,7	83,9	94,7
Weight							
Gross weight	kg	943	955	1011	1026	1128	1142
Operation weight	kg	923	946	996	1011	1105	1120

Operating conditions:

Uperating conditions: (1) Cooling: Outdoor air temperature 35°C; inlet/outlet temperature 12/7°C. (2) Cooling: Outdoor air temperature 35°C; inlet/outlet temperature 23/18°C. (3) Heating: Outdoor air temperature 7°C DB 6°C WB; inlet/outlet temperature 30/35°C. (4) Heating: outdoor air temperature 7°C DB 6°C WB; inlet/outlet temperature 40/45°C. (5) Cooling: water temperature inlet/outlet 12/7°C. (6) Heating: normal climatic condition; Tbiv=-7°C; eater temperature inlet/outlet 30/35°C. (7) Indicative data and subject to change. For the correct data, always refer to the technical bed on the unit. label on the unit.

(8) Calculated in the case of the plant water temperature decreased by 10°C for 6 minutes of defrosting.

(9) Condition (3); the value is determined on the basis of measurements taken in accordance with the UNI EN ISO 9614-2, in compliance with the requirements of Eurovent certification. (10) Sound pressure level measured at 10 m from the unit, in free field, according to ISO 3744.2010.

N.B. The performance data are indicative and could be subject to change. In addition, the perfor-mances declared in apex (1), (2), (3) and (4) refer to the instantaneous power according to EN 14511. The declared data stated in the apex (5) and (6) is determined according to the UNI EN 14825.

MAXA

Atria

Hybrid system with heat pump and boiler

21 kW÷29 kW

Atria's range is the ideal for domestic/residential installation, especially in situations where it is necessary the substitution on an existing system.

Respects the environment decreasing the carbon dioxide emissions. Is suitable for all types of domestic heating: radiant system, radiators, fancoil. Now a days the incentives provided for energy improvement are several.

The technological integration that guarantees:

- Versatility
- Energy consumption reduction
- Respect for the environment thanks with R32 gas
- Guaranteed savings, thanks to the 110% super bonus & thermal account
- Possibility of choice between the indoor boiler (I) and the outdoor boiler (E)

An hybrid system is made of a heat pump and a condensation boiler, expressly realized and designed from the manufacturer in order to make them work together.

Maxa new proposal allows to have an hybrid system according to current regulations which offers an high performance level without renunciation of an eco-friendly choice, that allows the carbon dioxide emission decrease in favour of environmental sustainability.

Accessories available separately ACT Inertial tank for hot and cold technical i-CR Remote wall controller water **KIT EXOGEL** Frost protection AG Vibration dumper SAS DHW probe / Sanitary water probe SPS Solar panel probe for GI FD Dirt separator filter GI * TPV Internal hardware extension module Starting coaxial stub 60/100 mm TAPS KIT Taps kit (condensing boiler) GI3 External hardware extension module Hi-TV415 Multifunctioning touch screen remote Dima Template for Atria hybrid module control * Factory mounted accessory excluding sizes i-32V5 6A and i-32V5 8A Loose accessories specific to ATRIA-I CDP Double starting curve 90 ° TPV Starting coaxial stub diam. 60 / 100mm diam. 60 / 100mm

Loose accessories specific to ATRIA-E

Splitter D.80F-F

DP

SDO

Wirecontroller	Standard for Atria E outdoor	
Wirecontroller	Standard for Atria E outdoor	

Versions ATRIA-I

```
Indoor condensing boiler
```

Starting diffuser for ATRIA E diam. 80mm (recommended accessory)

```
ATRIA-E
```

Outdoor condensing boiler

K		Т
	¥ 	н

		25-I	30-I	35-I	25-E	30-E	35-E
L	mm	400	400	400	400	400	400
Ρ	mm	250	250	250	250	250	250
Н	mm	700	700	700	700	700	700
	kg	31	31	32	31	31	32

Element Symbol Unit Value Value Value Value Value Load profile XL XL XL XL XL XL XL	ve Value XL A A
Load profile XL XL XL XL XL X	A A
	Α
Seasonal energy efficiency of room heating A A A A	Δ
Seasonal energy efficiency of water heating A A A A	7.
Nominal heating capacity P _{nominale} kW 21,0 25,0 29,0 21,0 25	0 29,0
Useful heat input at nominal heating capacity at high temperature (P4) kW 20,4 24,3 28,3 20,4 24	3 28,3
Annual fuel consumption A _{FC} GJ 17,3 17,4 17,6 17,3 1 ⁻	4 17,6
Seasonal energy efficiency of room heating (GCV) η_s % 91,7 92 93,2 91,7 92	93,2
Energy efficiency of water heating (GVC) η_{wh} % 85,1 84,86 83,6 85,1 84	36 83,6
Sound power level L _{wa} dB 50,5 52 52 50,5 5	52
Indoor Unit	
Туре С13 - С33 - С53 - С63 - С83	
Nox class mg/kWh 6 (24,40) 6 (36,06) 6 (24,71) 6 (24,40) 6 (3	06) 6 (24,71)
Nominal heating capacity kW 21 25,0 29 21 25	0 29
Nominal domestic hot water flow rate kW 25,5 31,0 34,9 25,5 31	0 34,9
Minimum heat input kW 3,7 4,0 4,0 3,7 4) 4,0
Max. useful power heating kW 20,4 24,2 28,3 20,4 24	2 28,3
Thermal power (80/60°C) kW 3,5 3,7 3,5 3	3,7
Thermal power (50/30°C) kW 3,9 4,2 4,1 3,9 4	2 4,1

Performance at 100% Pn (80/60°C) Performance at 100% Pn (50/30°C)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9/	97,1	97,5	9/	97,1	97,5		
Performance at 30% Pn (50/30°C)	%	107,7	103,3	107,8	107,1	103,3	103,3		
Outdoor unit									

Heating		i-32V5 06A	i-32V5 08A	i-32V5 10	i-32V5 12	i-32V5 14
Heating capacity (3)	kW	6,1	7,8	10,1	11,8	14,1
Power input (3)	kW	1,3	1,7	2,3	2,7	2,9
C.O.P. (3)	W/W	4,9	4,6	4,4	4,3	4,9
Heating capacity (4)	kW	6,0	7,7	9,8	11,5	13,6
Power input (4)	kW	1,6	2,1	2,8	3,3	3,6
C.O.P. (4)	W/W	3,8	3,7	3,5	3,4	3,8
SCOP (6)	W/W	4,5	4,5	4,5	4,5	4,5
Water flow (4)	L/s	0,3	0,4	0,5	0,6	0,7
Ext. pressure (4)	kPa	73,0	65,5	55,2	43,4	63,6
Energy efficiency (Water 35°C-55°C)		A+++/A++	A+++/A++	A+++/A++	A+++/A++	A+++/A++
		Cooli	ng			
Cooling capacity (1)	kW	5,2	6,1	7,5	8,51	11,5
Power input (1)	kW	1,6	2,0	2,4	2,8	3,5
E.E.R. (1)	W/W	3,2	3,1	3,2	3,1	3,3
Cooling capacity (2)	kW	6,4	8,0	9,5	11,6	14,0
Power input (2)	kW	1,3	1,8	2,2	2,79	2,6
E.E.R. (2)	W/W	4,9	4,5	4,4	4,16	5,4
SEER (5)	W/W	4,4	4,5	4,2	4,25	4,6
Water supply (1)	L/s	0,3	0,3	0,4	0,4	0,6
Ext. pressure (1)	kPa	3,2	5,3	68,9	63,4	75,0
		Hydraulic	circuit			
Hydraulic connections	inch	1"M	1"M	1"M	1"M	1"M
Minimum water volume (8)	L	40	40	50	60	60
		Electrica	l data			

Power supply	230V/1/50Hz	230V/1/50Hz	230V/1/50Hz (400V/3/50Hz)(11)			
Maximum absorbed power	kW	3,5	3,9	4,6	5,1	6,6
				· · · · · · · · · · · · · · · · · · ·		

(1) Cooling: outdoor air temperature 35° C; water temperature in / out 12/7° C.
(2) Cooling: outside air temperature 35° C; water temperature in / out 23/18° C.
(3) Heating: external air temperature 7° C d.b. 6° C b.u.; in / out water temp. 30/35° C.
(4) Heating: external air temperature 7° C d.b. 6° C b.u.; in / out water temp. 40/45° C.
(5) Cooling: in / out water temperature 12/7° C.
(6) Heating: average climatic conditions; Tbir = -7° C; in / out water temp. 30/35° C.
(7) Data indicative area of which the observe for the carrier data of water temp active area before the carrier data of water temp active area before.

(7) Data indicative and subject to change. For the correct data, always refer to the technical label on the unit.

(8) Calculated for a decrease in the system water temperature of 10 ° C with a defrost cycle lasting 6 minutes.

(9) Sound power: heating mode condition (3); value determined on the basis of measurements carried out in accordance with the UNI EN ISO 9614-2 standard, in compliance with the requirements of Eurovent certification.
 (10) Sound pressure: value calculated from the sound power level using ISO 3744: 2010 at a distance of 1 measurements.

distance of 1 m.

(11) Valid only with 10T / 12T outdoor unit

(12) Valid only for single-phase single models(*) by activating the maximum Hz function

Combination table

GI/ GI3 hardware expansion modules

	Modulo Gl					
	i-32V5	i-32V5 SL	MIDI	i-HPV5	i-MAX	HWA1
			•			1
	10 ÷ 16	12 ÷ 16				
Remote On/Off						
Domestic hot water management						X
DHW integration resistance						X
System resistance integration						
Boiler enable integration						
Double set point digital contact						
Summer-winter digital contact						
Signalling mode of operation						
Signaling functioning mode						
Two zones management						
Alarm-block signaling						
Block report						
Remote plant water probe	-					
Secondary circulator						
Mixing valve						X
Solar thermal integration						X
Climate compensation						
Mandatory accessory Accessory not necessary Function not available	□ X					

Combination table

		Modulo Gl	3		
i-32V5 *	i-32V5 SL *	i290 0106÷0118	i290 0121÷0127	i290 0240÷0250	
		6			
					Remote On/Off
					Domestic hot water management
					DHW integration resistance
					System resistance integration
					Boiler enable integration
					Double set point digital contact
					Summer-winter digital contact
					Signalling mode of operation
					Signaling functioning mode
					Two zones management
					Alarm-block signaling
					Block report
					Remote plant water probe
•			•		Secondary circulator
					Mixing valve
					Solar thermal integration
					Climate compensation

 * GI3 is not compatible with i -32V5 14/16, i-32V5 SL 16

Connect Box

Maximum Efficiency and Total Control of your heat pumps, just a click away!

Connect Box is the wireless gateway that enables efficient communication with Maxa heat pumps of the i-290, i-32V5, i-32V5SL, i-32V5 Midi and i-HPV5 ranges.

Maxa Connect allows you to record **all operating data of the Maxa heat pump in real time**, such as water temperatures in your system, manage its operating modes, and generally obtain a wide range of useful information.

Also remotely, it is possible to know both the power and the amount of thermal energy produced by your heat pump.

Maxa Connect

Connect Box makes it possible to interact with your air conditioning system via the new App

Maxa Connect.

Available both as a single App and as a Web App, therefore fully navigable using your desktop or mobile browser, Maxa Connect offers a simple and complete user experience.

Connect Box is quickly associated with the home router and immediately projects the heat pump into the MAXA cloud.

Thanks to its simple operation and deep integration with on-board electronics, the Connect Box is a useful tool for commercial and tertiary applications, allowing thermal system operators direct control of operating parameters.

Start My Connect

Connect Box enables authorised service centres to interact with the heat pump via the dedicated APP for the professional world: **Start My Connect**.

The latter enables the Connect Box to be associated with your heating system.

Easy to install, it uses the on-board ModBus connection, allowing you to reach your heat pump remotely and safely.

Intuitive User Interface

Modbus

User-friendly interface that allows users to easily monitor and manage their systems and installations.

Security

Utilizing state-of-the-art security technologies to protect your data and ensure secure communication with service technicians.

Diagnostics and monitoring

Advanced diagnostic tools allow for real-time monitoring of system status, enabling quick identification and remote problem-solving. View and access a complete history of alarms/events.

Remote Configuration

The platform enables remote adjustment of system and installation settings, minimizing the need for a physical presence of a technician on-site. Access to installations 24/7. Management of schedules and editing installation parameters.

Multifunctional remote control system

Touch screen LCD capacitive remote control for wall-mounted installations in residential and commercial indoor environments for managing MAXA heat pumps and water chillers.

٠

The e-LITE remote replicates all functions on board the MAXA unit, including:

- Turning on and off
- Setting operating modes
- Setpoint setting (heating, cooling, DHW production)
- Diagnostics and real-time data display
- Enabling DHW production
- Enabling double set-point

- Enabling dynamic setpoint
- Room thermostat
- Included 12 Vdc power supply
- Micro SD slot for firmware updates

Compatible with the following ranges: i-290, i-32V5, Atria, i-32V5 Midi, i-HPV5.

Hi-TV415 is a touch screen remote control suitable for the management of both individual systems and systems consisting of several units in cascade.

Hi-TV415 integrates the temperature sensor to also allow the management of the room thermostat function.

Hi-TV415 is presented with a very intuitive color interface that simplifies the use of control; all functions are easily adjustable thanks to the use of synoptics of immediate understanding.

i-CR Touch screen remote controller

LCD touch screen remote controller with negative LCD and capacitive keys for residential use for the control and management of the single unit. With i-CR you will be able to comfortably replicate all the functions from your home available on the control on the machine (reading probes, access parameters).

Other important functions are listed below:

Double set-point.

UP

Weekly programmable thermostat.

- Anti-Legionella cycle.
- Alarm history.
- Room thermostat

ON/OFF BACKLIGHT

Function that acts at the thermostat level, used to turn off/on the LEDs and the backlight. In OFF mode, the keyboard does not accept any command. This function has not no effect on the setting of the machine, but it enables/disables the interaction with the Thermostat. Allows you to exit the menu. If this buttons is pressed for 3 seconds, the keyboard will lockout and the padlock icon appears on the display. This function has not no effect on the setting of the machine, it is just used to enable/disable the interaction of the user with the thermostat keyboard.

This button allows you to move up to higher menus or to increase the value of a given parameter

DOWN This button allows you to move down on lower menus or to decrease the value of a given parameter

CHRONOTHERMOSTAT This allows you to set the operational time slot to regulate room temperature read by the probe on the i-CR

CHANGE SEASON BUTTON

Push this button at least for 3 seconds to change the season mode or to turn the heat pump/chiller unit OFF

ENTER BUTTON

Use this button to enter the menus or to confirm a parameter.
Maxa Das

Supervision, monitoring and analysis system

Maxa SCADA

It is the beating heart of the DAS system: it is a software for PC associated with a license, free buying a connection device, that acquires all data and parameterizations of the heat pump or system in real time, and send them to the visualization system.

- Multi-connection system with local units or inserted on one
- LAN / WIFI network or for remote connections.
- Simple and intuitive tree selection of the model from to monitor.
- Forcing the machine status.
- Monitoring of system variables, with notification system alarm via popup or by sending mail.
- Parameterization of the unit.
- Process registration.
- Event log and data traffic debugging.
- Import new models or updated revisions, through quick library import.
- Management of user levels.
- Available in Italian and English
- Online help
- Multiple levels of user management.

Maxa TREND

Useful for heat pumps and only cooling, displays all the processes in progress through configurable and customizable charts on multiple levels

- Graphic analysis of the acquired measurements with personalization of the tracks.
- List of activation and deactivation of alarms and time stamp.
- Cursor functionality to view and browse graphed data.
- Zoom for analysis on a temporal detail or relating to a range of values.
- Real-time updating of a process in progress.

Connectivity

There are three ways to connect our heat pump to the system DAS monitoring and everyone has a different level of operation.

1- Serial converter - Accessory ISK

Direct connection to the units via RS-485 serial cable and USB. For quick maintenance directly on the machines.

2- Lan-Wifi Router - Accessory LNC

Connecting the units on a local network using an Ethernet cable o WIFI coverage. For a local remote display, ideal for residential and commercial applications.

3- Lan-Wifi 4G Router with VPN Tunnel - Accessory OVPN

Remote connection of the units via an industrial router uses a secure and protected OPENVPN service. For monitoring at unlimited distance all over the world.

Calido 110

Wall mounted heat pump for domestic hot water

110 L

Calido 110 is a water heater in air/water heat pump for wall installation. Thanks to the volume of 110 liters of water, Calido 110 guarantees high compactness and aesthetic care.

The Calido 110 is perfect for the replacement of electric water heaters on existing systems, thanks to the functions of hot water temperature set, timer setting and function antilegionella.

Installation is very simple and practical.

R134A	Energy A B C			+43°C
-------	-----------------------	--	--	-------

The kettle is made of steel with vitrification treatment, insulated with rigid polyurethane foam (PU).

The condenser is wrapped in a steel tank, which is not immersed in water while the rotary compressor guarantees maximum efficiency and silence, and finally the centrifugal fan allows the air ducting necessary for the correct operation of the heat pump. Access to the battery is facilitated by the special compartment.

The machine has excellent yields even with external temperatures ranging from -5° C to $+43^{\circ}$ C thanks to the electronic expansion valve that improves its performance.

Technical Features

- Water boiler with 100 litres capacity, made of S235 JR steel with internal enamel coating, thermic insulation in hard thick expanded polyurethane (PU) without CFC and HCFC.
- External coating in metal sheet varnished with epossidic powders (white).
- Mounting brackets for wall installation.
- Magnesium anode for corrosion prevention.
- Hydraulic links located on the bottom part.

- Non submerged capacitor wrapped around the steel boiler.
- Integrated electric resistance 1,5 kW 230V~ activable through switches located inside control panel for heating of ranging from 60°C (max temp with heating pump only) to 70°C.
- Rotary compressor for maximum efficiency and reducing noise.
- Centrifugal fan for canalization of the necessary air for the proper functioning of the heating pump.
- Winged pack evaporator.
- R134a refrigerant cooling fluid.
- Safety thermostat set at + 85°C
- Dry contact to start the unit from external switch
- Complete electronic control with control panel equipped with LCD touch display, water temp gauge, bright functioning heating pump and electric resistance gauge, commands with relative gauges for the activation of the various functioning modes, warnings for eventual alarm malfunction, such as:
- Antilegionella function,
- Setting / display of date and hour,
- Hot water temp setting.

Accessori

Bracket for wall mounted Screws and dowels for mounting Spacers for wall mounted Dielectric couplings

Loose Accessories

Antivibration dampers for floor installation

		Calido 110
Energy class (1)		A+
Declared load profile		М
COP _{DHW} (ERP) (1)		3.01
Heating time	h: min	6: 53
Heating energy consumption	kWh	1.58
Annual electricity consuption (average climatic condition)	kWh/year	462
Duct air flow (nom.)	m³/h	300
Available static pressure	Pa	60
Rated power input	W	236 (3) [+1500 (2)]
Electrical Heating rated input	W	1500
Current (rated)	А	1.14 ⁽³) [+6.5 ⁽²⁾]
Maximum current	А	1.81 ⁽³⁾ [+6.5 ⁽²⁾]
Power supply	V/Ph/Hz	220-240~/1/50
Max outlet water temperature (without using E-heater)	°C	60
GWP - Refrigerant / Charge / GWP	/g /	R134a/650/1430
CO ₂ equivalent tonnes	t	0,93
Refrigerant pressure suction (max.) - discharge (max.)	Bar	0.2/25
Set point relief valve	Bar	8
Diameter of hydraulic connections	-	G 1/2" M
Storage tank nominal volume	L	110
Internal water tank material	-	Vetrificato
Sound power level	dB (A)	48.5
Net weight	kg	62
Gross weight (when tank filled)	kg	172
Net size (WxHxD)	mm	500x1406x520
Package Size (WxHxD)	mm	550x1460x550
Duct diameter	mm	125
Protection rating	-	IPX1
Operating temperature range	°C	-5~43

(1) Tank at room temperature 20° C, air in ducted entry 7° C DB, 6° C WB, inlet water temperature 10 ° C and tank set at 55 ° C.
 (2) Electrical resistance data
 (3) Room temperature 20°C, water temperature from 15 ° C to 55 ° C

Calido

Heat pump for domestic hot water

200÷300 L

Heat 200 and 300. The Calido range for floor installation is a system that takes advantage of the high efficiency of the air/water heat pump and ensures reduced operating costs, with a significant saving compared to traditional gas kettles or electric heaters only.

Calido 200 and 300 can be installed in a technical room or in secondary rooms of the house such as garages or laundries, Thanks to the particularly accurate aesthetics, Calido 200 and 300 can be perfectly integrated into domestic environments. The Calido-S and Calido-D versions allow integration with systems with solar thermal panels and/or auxiliary sources such as boilers or hydronic heaters. Thanks to a clean contact input it is possible to manage the system remotely or activate it according to any automation coming from the photovoltaic system of the house.

Technical Features

- Steel tank with double layer vitrification.
- Anti-corrosion magnesium stick for assuring the durability of the tank.
- Condenser wrapped externally to the boiler, free from fouling and gas-water contamination.
- High thickness polyurethane foam (PU) thermal insulation.
- Outer shell made of grey colour plastic material.
- Acoustically isolated top part plastic cover.
- Highly efficient compressor with the R134a refrigerant.
- High and low gas pressure protections.
- Electrical heater available in the unit as a back-up (with integrated thermo cut out with protection set at 90°C), assuring constant hot water even in extreme cold winters.
- ON-OFF contact for starting the unit from an external switch.
- Weekly disinfection cycle.
- Possibility of manage hot sanitary water re-circulation or solar water integration (presence of a dedicated temperature probe, flow switch input and command for an external pump).
- Electronic expansion valve for precise control

Advantages

 The actual set of the heat pump is controlled by a climate curve for preventing that the hot air taken from outside (over 25°C with water at 65°C, over 35°C with water at 55°C) may cause high pressure alarms.

- The electrical heater integrates automatically the temperature of the tank to the desired setting when the actual setting is controlled by the weather curve.
- Predisposition for integration with photovoltaic system. After enabling the photovoltaic inverter, the set temperature will increase to the maximum value (according to the climate

Flexibility and Benefits

- Waste heat recovery: the unit can be installed near the kitchen, in the boiler-room or the garage, basically in every room which has a large number of waste-heat so that it has the higher energy efficiency even with very low outside temperatures during the winter.
- Hot water, cooling and dehumidification: the unit can be placed in the laundry room, in clothing room, gym or garage. When it produces hot water it lowers the temperature and dehumidifies the room as well.
- Compatible with solar energy: the unit can work with a second heat source as solar panels, boilers or other different energy sources (remark: the extra heat source is not provided with).
- The function for which the unit has been designed is only that of heat pump for DHW production. Any other side effect (ambient cooling, dehumidification, waste heat recovery) should be considered as a perk. The performance data are therefore provided only with respect to the function of water heating.

Accessories ONE-SAS	T6 Solar/DHW temperature sensor	ONE-FL	Nylon flow switch 1″F 9 l/min
Versions	Standard version best sums and the		With double configure call in order to house
CALIDO-S	electric heater With auxiliary coil for use combination with solar panels	CALIDO-D	at the same time three energy sources.

Calido

Calido-D

Calido		200	200-S	200-D	300	300-S	300-D
Energy class (1)		A	A	A	A	A	A
Declared load profile		L	L	L	XL	XL	XL
COP _{DHW} (ERP) (1)		2.64	2.64	2.64	2.85	2.85	2.85
Heating time	h: min	07:48	07:48	07:48	09:53	09:53	09:53
Annual electricity consuption (average climatic condition)	kWh/year	1012	1012	1012	1426	1426	1426
Duct air flow (nom.)	m³/h			3	50		
Available static pressure	Pa			6	0		
Rated power input	W	2060 (3)					
Electrical Heating rated input	W	1200 (2)					
Current (rated)	А	2,21 (3) (+ 5.2) (2)					
Maximum current	А			3,2 (3) (-	+ 5.2) ⁽²⁾		
Power supply	V/Ph/Hz			220-240/1F	h+N+PE/50		
Max outlet water temperature (without using E-heater)	°C	65					
GWP - Refrigerant / Charge / GWP	/g /	R134a/920/1430					
CO ₂ equivalent tonnes	t			1,	32		
Refrigerant pressure suction (max.) - discharge (max.)	Bar			0,2	/ 25		
Diameter of hydraulic connections	-			G	1" F		
Storage tank nominal volume	L	228	220	217	286	278	273
Internal water tank material	-			Vitrification wi	th double layer		
Solar exchange coil surface	m ²	/	1,2	1,2	/	1,2	1,2
Auxiliary exchange coil surface	m ²	/	/	0,5	/	/	0,8
Sound power level	dB (A)			58	3,2		
Net weight	kg	98.0	106.5	113.0	121.5	121.0	129.5
Gross weight (when tank filled)	kg	326.0	392.5	333.0	399.5	338.0	402.5
Net size (ØxH)	mm	Ø 654x1638	Ø 654x1638	Ø 654x1638	Ø 654x1888	Ø 654x1888	Ø 654x1888
Package Size (WxDxH)	mm	700x700x1760	700x700x1760	700x700x1760	700x700x2010	700x700x2010	700x700x2010
Duct diameter	mm			Ø1	60		
Protection rating	-			IP	X1		
Operating temperature range	°C			-10 / -	+ 43°C		

(1) Tank at room temperature 20° C, air in ducted entry 7° C DB, 6° C WB, inlet water temperature 10 ° C and tank set at 55 ° C.
(2) Electrical resistance data
(3) Room temperature 20°C, water temperature from 15 ° C to 55 ° C

Aqua Speedy

Instantaneous hot water heater

18÷25 L

Aqua Speedy is an instant producer of hot water for sanitation purposes with a water-to-water heat exchanger made of stainless steel plates welded together. The temperature of the hot water for sanitation is regulated by a thermostatic mixer installed at the factory.

An external energy source from which the energy needed to produce the hot water for sanitation is always necessary. This energy source is usually represented by a technical storage tank kept at temperature by the heat pump. A circulator inside AquaSpeedy is responsible for regulating the amount of energy needed based on the type of hot water for sanitation withdrawal. AquaSpeedy allows for the production of hot water for sanitation in complete safety.

Advantages

- Instant production of hot water for sanitation
- Nominal delivery of hot water for sanitation 18 or 25 l/min
- High efficiency thanks to the oversized steel plate heat
- exchanger
- Wall or tank installation
- Quick installation
- Very easy maintenance
- Complete with black EPP thermal insulation 40 g/l.

Use

In both residential and commercial or tertiary heat pump systems, Aqua Speedy is a suitable solution to provide the domestic hot water production service of instant type.

3/4" F 3/4" F 3/4" F 1" M 1" M 1" M

Aqua Speedy		18	25
Maximum secondary output flow rate (DHW)	l/m	30	40
Minimum DHW ON/OFF flow rate	l/m	2,5 - 0,3	2,5 - 0,3
DHW pressure drop (30 l/min)	bar	0,5	0,9
DHW temperature setting	°C	40÷55	40÷55
Maximum pressure	bar	10	10
Heat exchanger surface	m ²	0,882	1,76
Maximum primary flow rate	l/h	1480	1700
Max temperature	°C	90	90
Circulator		Wilo PARA SC 15/1-6	Wilo PARA SC 15/1-6
Maximum absorbed power	W	45	45
Connections		3/4"F-1"M	3/4"F-1"M
Maximum dimensions (packaging)	mm	620x490x30	620x490x30
ULTRA CFMUS ULTRASONIC M-BUS Qn 1,5 m3/h - 110 x 3/4"	mm	1,5 m³/h - CL2 - 110 mm x ³/4"	1,5 m³/h - CL2 - 110 mm x ³/4"
ULTRA CFMUS ULTRASONIC M-BUS Qn 1,5 m3/h - 110 x 3/4"	mm	1,5 m³/h - CL2 - 110 mm x ³/4"	1,5 m³/h - CL2 - 110 mm x ³/4"
Dimensions LxPxH	mm	400x250x600	400x250x600

25

Versions

18

18 liters per minute with input 10°C, output 48°C, and buffer 55°C.

25 liters per minute with input 10°C, output 48°C, and buffer 55°C.

Puffroller

Optimal for the storage of chilled and hot water

60÷880 L

- To be integrated on all kind of plants.
- Storage rapidity, abundant and continuous erogation.
- High efficiency for low exercice costs
- Absolute hygiene
- Long durability without corrosion
- Simplicty of installation
- Inside untreated.
- Fixture point for wall installation for models 60/120 and 200 I.
- The models 60/120 and 2001 can be installed in horizontal or
- vertical position.
- Polyurethane foam insulation 50 mm.
- Prepared for inserting auxiliary electric resistance.

Puffroller		60	120	200	280	400	480	750	880
Total storage		58	126	203	283	399	483	732	855
Isolation thickness	mm	50	50	50	50	50	50	30	30
Total height insulation included	mm	935	1100	1395	1560	1540	1840	1725	1975
Diameter isolation included	mm	380	510	550	600	700	700	850	850
Unloaded weight	kg	25	35	45	55	95	100	170	190
Heating max working pressure	bar	6	6	6	6	6	6	6	6
Boiler max working temp	°C	95	95	95	95	95	95	95	95
Hydraulic connections			60-120	200	280	400	480	750	880
Air evacuation			1"	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4
Boiler inlet			1" 1/4	1" 1/2	2"	2" 1/2	2" 1/2	3"	3"
Heating inlet			-	-	-	-	2" 1/2	3"	3"
Boiler - heating outlet			1" 1/4	1" 1/2	2"	2" 1/2	2" 1/2	3"	3"
Thermometer			1/2	1/2	1/2"	1/2"	1/2"	1/2"	1/2"
Feeler			1/2	1/2	1/2"	1/2"	1/2"	1/2"	1/2"
Electric heater			1" 1/2	1" 1/2	1" 1/2	1" 1/2	1" 1/2	1" 1/2	1" 1/2
Drain			1/2	1/2	3/4"	3/4"	3/4"	1"	1"

Accessories

RE1.5M3	Electrical resistance single phase 1,5 kW (L=340 mm) *	VAS VE24AT	Anti-scalding valve Expansion vessel 24 l for tanks with
RE2.0M3	Electrical resistance single phase 2,0 kW (L=390 mm) *	VEP35AT	capacity up to 500 l Expansion vessel 35 l for tanks with
RE3.0M3	Electrical resistance single phase 3,0 kW (L=390 mm) *		capacity up to 1000 l

* Not for model 60-750-880

B-Puffroller

Technical water double puffer for DHW production and plant side

300/80-500/70 L

- Integrated and compact solution
- To be integrated on all kind of plants.
- Storage rapidity, abundant and continuous erogation.
- High efficiency for low exercice costs
- Absolute hygiene
- Long durability without corrosion
- Simplicty of installation
- Inside untreated.
- Polyurethane foam insulation 50 mm.
- Prepared for inserting auxiliary electric resistance
- Lower Puffer for heat or cold water,
- No inside handling. Insulation: PU-hard polyurethane 70 mm

B-Puffroller		300	500
Total storage		363	553
Isolation thickness	mm	50	50
Total height insulation included	mm	1940	2050
Diameter isolation included	mm	600	700
Unloaded weight	kg	55	100
Heating max working pressure	bar	б	б
Boiler max working temp	°C	95	95

 * For the accessories see the Puffroller's page

Lower tank		
Thermal wheel for Heat Pump	80	70
Upper tank		
Connector Type	300	500
Air evacuation	1" 1/4	1" 1/4
Boiler outlet	2″	2" 1/2
Heating circuit outlet	-	2" 1/2
Boiler - heating circuit return at 50°C	2"	2" 1/2
Boiler - heating circuit return at 30°C	1/2"	1/2"
Thermometer	1/2"	1/2"
Feeler	1/2"	1/2"
Electric heater	1" 1/2	1" 1/2
Drain coil	3/4"	3/4"

Caddy

Tank for heating water with innovative thermic chimney and incorporated sanitary exchanger

300÷800 L

Innovative tank for alternative source and instant sanitary water production. Caddy is the synthesis of integration tanks to its sanitary water exchanger for the best performance with different energetic sources.

- Insulation made of soft polyurethane 100 mm.
- Solar intergration for HDW and heating technical water.
- Gas boiler integration.
- Wood boiler integration.
- Instantaneous HDW
- Stratification with hydraulic chimney.
- 4 m2 copper coil exchanger.
- Sanitary water exchanger to choose.
- Absolute hygiene.
- Long durability.

Caddy		300	500	800
Total storage		270	450	700
Isolation thickness	mm	100	100	100
Total height insulation included	mm	1625	1765	1780
Diameter isolation included	mm	700	850	990
Lower collector pipe coil	m ²	1,9	2,5	2,5
Water capacity of pipe coil	I	11,4	14,9	14,2
Power input	kW	45	60	63
Unladen weight	kg	130	150	220
Heating max working pressure	bar	3	3	3
Boiler max working temp	°C	95	95	95

Extractable heat-exchanger kit, complete with bored flange, upper cap for flange and nuts and bolts, already included

		4
Heat exchanger surface	m ²	4,0
Pipe coil water capacity		2,8
Power input	kW	80
Domestic hot water production	m³/h	2,0
Pressure loss	mbar	584
Power code (DIN 4708)	NL	20

Barrel

DHW boiler with internal treathment and pipe coil for heat pump

300÷1000 L

Water-heater made of high quality steel with 1 fixed pipe-coil, complete with anodic protection, inside treament according to norm DIN 4753 and UNI 10025. Insulation: Foamed hard polyurethane layer 50 mm (mod.200÷500), soft polyurethane 100 mm (mod. 800÷1000).

- To be integrated on all kind of plants.
- Storage rapidity, abundant and continuous erogation.
- High efficiency for low exercice costs.
- Absolute hygiene.
- Long durability without corrosion.
- Simplicty of installation.
- Efficient heat-exchange surface.
- Barrel SE version with solar heat exchanger.

For the accessories see the Puffroller's page

* Check that the water contained in the coil is above the minimum water content required by the heat pump

Hybridroller

Double tank for DHW production from heat pump and solar with thermal wheel for hot/cold water

60÷500 L

- To be integrated on all kind of plants.
- Storage rapidity, abundant and continuous erogation.
- High efficiency for low exercice costs.
- Absolute hygiene.
- Long durability without corrosion.
- Simplicity of installation.
- Efficient heat-exchange surface.
- Integrated and compact solution.
- Space saving.

H2

Upper Tank with 1 fixed pipe-coil, made of high quality steel, complete with anodic protection, inside treatment according to Norm DIN 4753-3 and UNI 10025. Lower Puffer for heat or cold water, no inside handling. Insulation: PU-hard polyurethane 70mm

Hybridroller		H2		H2SE		
		300	500	300	500	
Diameter with insulation	mm	690	790	690	790	
Tot. Height	mm	1925	2040	1925	2040	
Weight Empty	kg	150	200	150	200	
Effective Capacity	I	270	460	270	450	
Pressure Of Operation Serpentine	bar	10	10	10	10	
Pressure Of Operation Tank	bar	10	10	10	10	
Maximum Temperature Serpentine	°C	110	110	110	110	
Maximum Temperature Tank	°C	95	95	95	95	
Coil Surface Area	m ²	2,8	4,4	3,7	6,0	
Contenuto Acqua Serpentino *	I	17	26,6	20,2	51,5	
Rated capacity (60/50°C)	m³/h	1,2	2	1,3	2,7	
Output power (60/50°C)	kW	14	23	15	31	
Produzione Sanitaria (10/45°C) Din 4708	m³/h	0,34	0,57	0,37	0,76	
Perdita Di Carico	mbar	13	22	11	31	
Thermal Wheel For Heat Pump		80	74	80	74	
Pressure Of Operation Puffer	bar	6	б	б	6	
Maximum Puffer temperature	°C	95	95	95	95	

H2SE

Upper Tank with 2 fixed pipe-coils, made of high quality steel, complete with anodic protection, inside treatment according to Norm DIN 4753-3 and UNI 10025. Lower Puffer for heat or cold water, no inside handlingInsulation: PU-hard polyurethane 70mm.

0

Hybridroller		H2	SE
		300	500
Lower Pipe Coil			
Coil Surface Area	m ²	0,9	1,5
Water Capacity Of The Pipe Coil	I	5,3	9,4
Heating Water (80/60°C)	m³/h	0,9	1,6
Heat Delivered	kW	22	37
Output Sanitary Water (10/45°C) Din 4708	m³/h	0,54	0,91
Pressure Loss	mbar	7	13
Coils In Series			
Total Surface Area	m ²	3,7	5,9
Total Content	I	22,3	36
Heating Water (60/50°C)	m³/h	1,7	2,8
Heat Delivered	kW	20	32
Output Sanitary Water (10/45°C) Din 4708	m³/h	0,49	0,79
Pressure Loss	mbar	26	42

* Check that the water contained in the coil is above the minimum water content required by the heat pump

Accessories			
RE1.5M3	Electrical resistance single phase 1,5 kW (L=340 mm) *	VAS VE24AT	Anti-scalding valve Expansion vessel 24 I for tanks with
RE2.0M3	Electrical resistance single phase 2,0 kW (L=390 mm) *	VEP35AT	capacity up to 500 l Expansion vessel 35 l for tanks with
RE3.0M3	Electrical resistance single phase 3,0 kW (L=390 mm) *		capacity up to 1000 l

The HydroFull range concentrates all the main system components within a single container, simplifying the installation of heat pump systems.

WIDE RANGE

Different models are available with different types of DHW storage and various sizes of inertial storage for system service.

• FULL ELECTRIC SOLUTION

The HydroFull range can be operated with i-32V5 and i-290 series monobloc pumps with a service guarantee using electricity only.

DOMESTIC HOT WATER

Perfect combination of the high reliability of the tank made of AISI 316 L stainless steel and two different capacities for different needs.

INSTALLATION FLEXIBILITY

Various models of storage box allow them to be installed either recessed within the masonry or visible.

INERTIAL STORAGE

Various standard or optional equipment allows to guarantee an adequate volume of technical water.

Maximum flexibility 5 Versions

48

Dimensio	ns	С	R	L	Х	Y
L	mm	700	950	1000	1000	1000
Р	mm	350	350	425	425	425
Н	mm	2200	2200	2250	2250	2250
L P H	mm mm mm	700 350 2200	950 350 2200	1000 425 2250	1000 425 2250	1000 425 2250

		HydroFull-C	HydroFull-R	HydroFull-L	HydroFull-X	HydroFull-Y
Insulation type domestic hot water tank		polyurethane	polyurethane	polyurethane	polyurethane	polyurethane
Exchange surface	mq	1.65	1.2	2	2	2
Inertial tank capacity	L	20	20	-	40	40
Net weight	kg	100	149	185	210	210
Nominal capacity of domestic hot water tank	L	150	150	200	200	200
Useful hydraulic pump head	kPa	68	68	68	68	68
Volume of the expansion vessel	L	6	6	12	12	12
Heat loss	W	75	75	75	75	75
Net box dimensions (LxHxP)	mm	700 x 2200 x 350	950 x 2200 x 350	1000 x 2250 x 425	1000 x 2250 x 425	1000 x 2250 x 425

HydroFull is only compatible with:	Range	Models
	i-32V5	06A, 08A, 10, 10T, 12, 12T
	i-290	0106, 0109, 0112

HydroFull-C	accessories				
CARTER	Wall box side closure Carter kit for covering hydraulic connections in visible installations System expansion tank kit 10 lt	RE1.5M-R	1.5 kW electric heater, complete with safety thermostat, managed by the PDC electronics		
HydroFull-R	accessories				
BOX-R	Wall box for built-in or visible installation. Supplied disassembled.	RE1.5M-R	1.5 kW electric heater, complete with safety thermostat, managed by the PDC electronics		
HydroFull-L	accessories				
BOX-L-Z	Galvanised built-in installation wall box.	RE1.5M-L	1.5 kW electric heater, complete with		
BOX-L-V	Supplied disassembled. Wall box for exposed installation painted RAL 9016. Supplied dissambled		sarety thermostat, managed by the PDC electronics		
HydroFull-X	accessories				
BOX-L-Z	Galvanised built-in installation wall box. Supplied disassembled.		safety thermostat, managed by the PDC electronics		
BOX-L-V	Wall box for exposed installation painted	VE10AT	Expansion tanks 10 l for technical water		
RE1.5M-L	1.5 kW electric heater, complete with		Storage		
HydroFull-Y	accessories				
BOX-L-Z	Galvanised built-in installation wall box. Supplied disassembled.	VE10AT	Expansion tanks 10 l for technical water storage		
BOX-L-V	Wall box for exposed installation painted	KR-L	Direct booster set with standard		
RE1.5M-L	1.5 kW electric heater, complete with safety thermostat, managed by the PDC electronics	K-MIX-L	Mixed booster set (230V) with standard circulator 6 m head		

HydroFull-C

BOX

White painted box for built-in or exposed installation (only 70 cm width, 35 cm depth and 2.2 m height), with practical front opening for easy inspection and maintenance.

BOILER

Vertical stainless steel boiler with a capacity of 150 litres, high stratification with increased coil with high exchange surface. An electric heating element can be fitted as optional.

INERTIAL STORAGE 20 LITRES

RELAUNCH KIT

Direct zone relaunch kit downstream of the hydraulic compensator

HYDRAULIC AND ELECTRIC KIT

Hydraulic and electrical kit for connection with heat pumps of the i-32V5 and i-290 series including:

- 3-way valve with priority on the DHW side
- 6-litre expansion vessel on DHW side
- thermostatic mixing valve
- system loading unit
- relaunch circulator with 7 m head
- hydraulic compensator.

BOX

White painted box for built-in or exposed installation with practical front opening for easy inspection and maintenance (accessory).

BOILER

Highly stratified vertical 316L stainless steel boiler with a capacity of 150 litres, single elliptical coil with concentric double helix for 1.2 m2 of surface area. HYDRAULIC AND

ELECTRIC KIT

Hydraulic and electrical kit including:

- 3-way valve sanitary priority
- 20-litre inertial storage to optimise the modulation accuracy of the heat pump
- thermostatic mixing diverter valve
- 6-litre domestic expansion tank
- Taps kit

*All components are supplied in special mounting kits

HydroFull-L

BOX

Box supplied disassembled, made of galvanised sheet metal for built-in installation, with vasistas opening doors or self-supporting box supplied pre-assembled, made of sheet metal painted RAL 9016, with vasistas opening doors.

SANITARY CIRCUIT

Sanitary circuit, with AISI316L stainless steel boiler, 200 L capacity in with heat pump exchanger with nominal power up to 12 kW.

HYDRAULIC CIRCUIT

Hydraulic circuit for connection to the heat pump system.

SUPPLIED MATERIALS

- sanitary diverter valve
- connection pipes to the boiler sanitary circuit connection pipes safety devices
- thermostatic valve
- sanitary circuit connection pipes safety devices.

*All components are supplied in special mounting kits

HydroFull-X

BOX

Box supplied disassembled, made of galvanised sheet metal for built-in installation, with vasistas opening doors or self-supporting box supplied pre-assembled, made of sheet metal painted RAL 9016, with vasistas opening doors.

SANITARY CIRCUIT

Sanitary circuit, with AlSI316L stainless steel boiler, 200 L capacity in with heat pump exchanger with nominal power up to 12 kW.

HYDRAULIC CIRCUIT

Hydraulic circuit for connection to the heat pump system.

SUPPLIED MATERIALS

- sanitary diverter valve
- connection pipes to the boiler
- sanitary circuit connection pipes safety devices
- thermostatic valve
- sanitary expansion tank
 direct discharge to the system.
 - anect discharge to the system

ACCUMULATION

40 litre technical water tank

*All components are supplied in special mounting kits

HydroFull-Y

Box supplied disassembled, made of galvanised sheet metal for built-in installation, with vasistas opening doors or self-supporting box supplied pre-assembled, made of sheet metal painted RAL 9016, with vasistas opening doors.

SANITARY CIRCUIT

BOX

Sanitary circuit, with AISI316L stainless steel boiler, 200 L capacity in with heat pump exchanger with nominal power up to 12 kW.

HYDRAULIC CIRCUIT

Hydraulic circuit for connection to the heat pump system.

SUPPLIED MATERIALS

- sanitary diverter valve
- connection pipes to the boiler
- sanitary circuit connection pipes safety devices
- thermostatic valve
- sanitary expansion tank
- predisposition for two relaunches.

ACCUMULATION

40 litre technical water tank

*All components are supplied in special mounting kits

HWA1-A 0140÷0285 **HWA1-A/H** 0140÷0285*

Air cooled liquid chiller and reversable heat pump for oudoor installation

40 kW÷85 kW

Air cooled liquid chillers and reversible heat pumps, with scroll compressors, axial fans with inverter control (except cooling only version), high performances plate heat exchanger, circulating pump, connectable with Hi-Touch remote controller. Models widely used for replacing old units or to be installed on new systems.

Technical Features

- Hot-galvanised thick sheet metal frame.
- Scroll ermetic 3-phase compressor complete with integral protection module.
- Axial fan type AC, which allows condensation control up to 0°C.
 Microchannel aluminium condensation coil (cooling only) and
- Louve with splitted circuits (heat pump version).
- Evaporator.

(*) Eurovent certified product range

- Frontal electrical panel.
- Microprocessor with overheating control logic program.
- Refrigerant circuit manufactured according to the UNI EN 13134 directive.
- High and low pressure transducers, with values that can be shown on the display.
- Water circuit in copper tubing.
- Standard equipped with control and protection devices.

Fitted accessories

C CM DSFR EC GI IM KA	Ducted version Modbus interface RS485 activation Sequence control device, phase failure + Minimum and Maximum voltage relay EC inverter fan, modulating up to -15°C air (standard on 0285 cooling only and 0273, 0285 heat pump) Internal hardware extension module Magnethermic switch for compressors and fans Plate heat exchanger + basament electrical heaters (for HWA1-A/H heat pump versions)	KA1 PS SL SSL TR1 TR2	Anti-frost heater on plate exchanger Single circulating pump with high pump head Standard silencing Super silencing with EC fan and condensing control down to -15 °C Micro-channel coil with Aero surface treatment (for cooling only version HWA1-A) Cu / Al coil with Silver Line anti-corrosion treatment
Loose accessor	ies		
AG Hi-TV415	Rubber shock absorbers Hi-touch controller	i-CR FY	Remote wall controller Y-strainer
Versions HWA1-A HWA1-A/H	Cooling only Air cooled water chiller and reversibile heat pump	HWA1-A/BT HWA1-A/C	Cooling only for low temperature water production Ductable version

Structure

With support frame, hot galvanized sheet, painted with polyurethane powder enamels at 180 $^\circ$ C to ensure the best weather resistance.

Compressors

Three-phase hermetic compressors installed on rubber antivibrations, complete with integral protection modules with PT100 drowned in engine windings.

Fan

Special profile axial, directly connected to the external rotor motor with IP54 degree of protection, complete with overtemperature protection of the motor and grill.

Outdoor Heat Exchanger

For cooling only units, microcanal aluminum heat exchanger that guarantees:

- No galvanic corrosion (100% aluminum)
- Reduction of refrigerant charge (up to 70%)
- Long life even in very aggressive environments
- ΔP lower air side (up to 30%)
- Good refrigerant distribution thanks to the special 3-step design.

For the heat pump version: Aluminum finned pack changers with pitch type louver wedges and copper plated tubes with split circuits for maximum evaporative efficiency and undercooling circuit to increase refrigeration capacity.

Plant side Heat Exchanger

Plate type, stainless steel plates AISI 304, braided type.

Electric panel

Includes: General disconnector with door lock, fuses, fan and pump compressor remote sensors, electronic board for the management of all Analogic Input and Output, Digital Input and Output.

Control System (Microprocessor)

The units are equipped with a microprocessor that adopts a logic program and regulates the overheating through an electronic thermostatic valve monitored by the pressure transducer signals and temperature sensors. The CPU also manages the following functions: water temperature control, antifreeze protection, high and low pressure protection, compressor timing adjustment, alarm management and alarm, operating LEDs. On request, the microprocessor can be connected to a BMS remote control system.

Refrigerant circuit

The refrigerant circuit was built according to the UNI EN 13134 standard for welding procedures. The refrigerant used is R410A. The basic refrigerant circuit includes: electronic expansion valve, liquid separator, liquid receiver, maintenance and control valves, pressure regulator according to PED regulation, pressure transducers for precise setting of evaporation and condensing pressures, High capacity drier filter. In addition to the heat pump versions: the 4-way switch valve, the VEE capacity extension solenoid valve and 4 switching valves to allow installation of any heat recuperators.

Hydraulic circuit

The copper pipe circuit includes: service valve and flow switch, antifreeze sensor installed on the water supply pipe to the plant, safety valve, drain cock, air vent valve and pressure gauge.

МЛХЛ

Dime	nsions	0140	0147	0260	0273	0285
L	mm	1125	1125	1125	1125	1125
Р	mm	1170	1170	1170	1170	1170
Н	mm	2040	2040	2070	2070	2070

Minimum clearance	es	0140	0147	0260	0273	0285
A Frontal Panel	mm	800	800	800	800	800
D	mm	800	800	800	800	800
В	mm	200	200	800	800	800
С	mm	600	600	600	600	600

HWA1-A		0140	0147	0260	0273	0285
Cooling						
Cooling capacity (1)	kW	39,7	46,8	60,8	73,3	86,5
Power input (1)	kW	12,5	15,1	19,3	24,8	29,3
EER (1)	W/W	3,16	3,11	3,16	2,95	2,96
Cooling capacity (2)	kW	54,4	63,5	81,9	99,4	116,3
Power input (2)	kW	14,3	17,0	21,9	28,0	33,3
EER (2)	W/W	3,80	3,74	3,75	3,55	3,50
SEER (3)	W/W	3,80	3,80	4,05	3,98	4,14
Cooling capacity (8)	kW	22,7	27,0	36,2	42,9	51,1
Power input (8)	kW	11,4	13,5	16,9	22,1	25,7
EER (8)	W/W	1,99	2,01	2,14	1,94	1,99
Water flow (1)	L/s	1,90	2,24	2,92	3,51	4,14
Pressure drop (1)	kPa	54,08	51,68	56,79	46,43	50,41
Compressor						
Туре		Scroll	Scroll	Scroll	Scroll	Scroll
Compressors	n°	1	1	2	2	2
Refrigerant circuits	n°	1	1	1	1	1
Refrigerant charge (4)	kg	7,8	7,8	12,8	13,4	14,6
Fan						
Nominal air flow Y/ Δ	m³/s	4,04/5,32	3,88/5,23	4,15/5,44	4,86/6,01	7,4
Hydraulic circuit						
Max pressure hydronic kit	bar	6	6	6	6	6
Water connections	inch	2"	2"	2"	2"	2"
Min. water volume (5)	L	330	380	260	380	490
Sound level						
Sound power (6)	dB(A)	81	81	82	83	84
Sound pressure (7)	dB(A)	49,3	49,3	50,3	51,3	52,3
Electrical data						
Power supply		400V/3P+N+T/50Hz	400V/3P+N+T/50Hz	400V/3P+N+T/50Hz	400V/3P+N+T/50Hz	400V/3P+N+T/50Hz
Max. power input	kW	17,0	21,5	28,0	35,0	43,0
Max. current input	A	28,0	38,0	45,0	56,0	71,0

Max. current input	A	28,0	38,0	45,0	56,0
Weight					
Gross weight	kg	365	375	470	495
Operation weight	kg	350	360	455	480

Operating conditions:

Uperating conditions: (1) Internal exchanger water temp.=12/7 ° C, air entering the external heat exchanger 35° C. (2) Internal exchanger water temp.=23/18 ° C, air entering the external heat exchanger 35° C. (3) Internal exchanger water reference temperature = 12/7 ° C. (4) Indicative data and subject to change. For the correct data, always refer to the technical

label on the unit.

(5) The calculated value of minimum volume of water at the plant does not consider the volume of water contained in the internal exchanger (evaporator). With low external air temperature applications or low average loads required, the minimum volume of water to the system is obtained by doubling the indicated value.

(6) Condition (3); value determined on the basis of measurements carried out in accordance with the UNI EN ISO 9614-2 standard, in compliance with the requirements of the Eurovent certification.

510

495

(7) Value calculated from the sound power level using ISO 3744: 2010, referred to 10 m distance from the unit.

(8) Cooling version BT: outdoor air temperature 35 ° C, internal exchanger water temperature = -3 / -8 ° C. Fluid treated with 35% ethylene glycol.

N.B. The performance data are indicative and could be subject to change. In addition, the performances declared in apex (1), (2), and (8) refer to the instantaneous power according to EN 14511. The declared data stated in the apex (6) is determined according to the UNI EN 14825.

HWA1-A/H		0140	0147	0260	0273	0285
Cooling						
Cooling capacity (1)	kW	38,6	45,6	58,6	71,2	80,2
Power input (1)	kW	13,0	15,7	19,9	24,6	29,2
EER (1)	W/W	2,97	2,91	2,94	2,90	2,75
Cooling capacity (2)	kW	51,8	60,6	77,7	94,1	106,4
Power input (2)	kW	14,7	17,6	22,6	28,0	33,3
EER (2)	W/W	3,53	3,43	3,43	3,37	3,20
SEER (5)	W/W	3,82	3,8	3,94	3,98	4,07
Water flow (1)	L/s	1,86	2,20	2,83	3,41	3,84
Pressure drop (1)	kPa	55,8	56,6	61,5	63,7	66,6
Heating						
Heating capacity (3)	kW	43,5	48,2	64,1	80,9	88,7
Power input (3)	kW	10,7	12,3	15,6	20,0	22,7
COP (3)	W/W	4,05	3,92	4,10	4,05	3,90
Heating capacity (4)	kW	42,1	47,8	63,0	74,9	84,6
Power input (4)	kW	12,8	14,8	18,8	23,3	28,5
COP (4)	W/W	3,28	3,23	3,35	3,22	2,97
SCOP (6)	W/W	3,49	3,34	3,85	3,84	3,70
Water flow (4)	l/s	2,02	2,30	3,03	3,60	4,07
Use side heat exchanger load losses (4)	kPa	84,4	81,6	84,1	81,5	84,1
Energy efficiency (Water 35°C)		A+	A+	A++	A++	A+
Compressor						
Туре		Scroll	Scroll	Scroll	Scroll	Scroll
Compressors	n°	1	1	2	2	2
Refrigerant circuits	n°	1	1	1	1	1
Refrigerant charge (7)	kg	9,98	9,98	14	15,25	15,6
Fan						
Nominal air flow	m³/s	4,3	5,3	6,3	6,9	7,4
Hydraulic circuit						
Max pressure hydronic kit	bar	6	6	6	6	6
Water connections	inch	2"	2"	2"	2"	2"
Min. water volume (8)	L	330	380	260	380	490
Sound level						
Sound power (9)	dB(A)	84	85	89	88	88
Sound pressure (10)	dB(A)	52,3	53,3	56,3	56,3	56,3
Electrical data						
Power supply	1.1.1	400V/3P+N+1/50Hz	400V/3P+N+1/50Hz	400V/3P+N+1/50Hz	400V/3P+N+1/50Hz	400V/3P+N+1/50Hz
	KVV	1/,U	21,5	28,0	35,0	43,0
wax.current input	A	∠ŏ,U	38,U	45,0	30,U	/ I,U

Data referred to the following condition:

Gross weight

Operation weight

(1) Cooling: outdoor air temperature 35°C; water temperature inlet/outlet 12/7°C.

(2) Cooling: outdoor air temperature 35°C; water temperature inlet/outlet 23/18°C.
 (3) Heating: outdoor air temperature 7°C d.b. 6°C w.b.; water temperature inlet/outlet 30/35°C.
 (4) Heating: outdoor air temperature 7°C d.b. 6°C w.b.; water temperature inlet/outlet 40/45°C.

kg

kg

400

390

420

410

(6) Heating: outcool al temperature > 0.0.0 °C.
 (6) Heating: average climatic conditions; Tbiv = -7 °C; Water Temp in/out 30/35 °C.

(7) Indicative data and subject to change. For the correct data, always refer to the technical label on the unit.

(8) The calculated value of minimum volume of water at the plant does not consider the volume of water contained in the internal exchanger (evaporator). With low external air temperature applications or low average loads required, the minimum volume of water to the system is obtained by doubling the indicated value.

(9) Condition (3); value determined on the basis of measurements carried out in accordance with the UNI EN ISO 9614-2 standard, in compliance with the requirements of the Eurovent certification.

520

505

(10) Value calculated from the sound power level using ISO 3744: 2010, referred to 10 m distance from the unit.

545

530

N.B. The performance data are indicative and could be subject to change. In addition, the performances declared in apex (1), (2), and (8) refer to the instantaneous power according to EN 14511. The declared data stated in the apex (6) is determined according to the UNI EN 14825.

555

540

HWA1-A 02106÷04349

Air-Cooled liquid chiller for outdoor installation

106 kW÷349 kW

The high efficiency air-cooled chillers and heat pumps of the HWA1-A and HWA1-A / H series are designed for outdoor installation, available in 24 sizes, 12 chillers and 12 heat pumps, so as to satisfy all system requirements in commercial, residential and industrial buildings.

These are units made for cooling and heating water, very versatile and characterized by the possibility of complete and simple maintenance management.

Fitted accessories

2SFV	Double security valve with changeover valve	PDAP	High pressure double pump
BT	BT version for low water temperatures	PDAP/SI	Double high pressure pump+tank
C	Ducted version	PS	Standard pressure pump
cc	Condensation control up to -20°C	PS/SI	Standard pressure pump+tank
СМ	Modbus communication module	PSAP	High pressure pump
СТ	Condensation control up to -10°C	PSAP/SI	High pressure pump+tank
DS	Chiller with desuperheater	RFM	Suction and discharge ball valve for compressors
EC	EC fan (included in versions C, BT, SSL)	SAS	Remote probe
GR1	Cooling circuit anti-intrusion grid	SH	Schuko plug (with magnetothermal switch)
GR2	Condenser anti-intrusion grid	SL	Silenced version
GR3	Condenser and circuit anti-intrusion grid	SS	Soft starter
IM	Magnethermic switch for compressors and fans	SSL	Super silenced version
KS	Hoist ring kit	TE1	Special pump gasket seal for glycol concentration over
LQ	Electrical board lighting		40%
PD	Standard double pump	TR1	Micro-channel coil with Aero surface treatment
PD/SI	Double standard pump+tank		
Loose a	ccessories		

RV

SAS

/PS

PD

/PSAP

PDAP

PD/SI

PS/SI PSAP/SI

PDAP/SI

AG	Anti-vibration rubber mounts
AM	Anti-vibration spring mounts
FY	Y-strainer
Hi-TV415	Touch screen display
i-CR	Remote control
ISK	Serial converter USB/RS485 (ISK)

starting pipes

Remote probe

MAXA

Standard

Remote probe enabling

Versions

HWA1-A Standard version chille	HWA1-A	Standard	version	chille
--------------------------------	--------	----------	---------	--------

You can choose an	acoustic configuration from the following
/SL	Silenced version
/SSL	Super silenced version
/C	Ductable version

There are different types of hydronic kits to be combined with the chiller: with single/double pump standard/high pressure, with or without tank:

Standard pressure pump High pressure pump Double standard pressure pump High pressure double pump Standard pressure pump + tank High pressure pump + tank Double standard pressure pump + tank Double high pressure pump + tank

Starting kit made by 2 grooved couplers and 2 straight

Carpentry

Suitable for outdoor installation, consisting of thick profiles in hot galvanized steel sheet or painted with RAL 7035 polyester powder resistant to atmospheric agents.

Source (side) heat exchanger air

Full-aluminium coil microchannel type. Coil structure made with an open-angle V-geometry layout.

Compressor

Hermetic scroll complete with internal thermal protection. The compressor is isolated from the structure by interposition of special rubber mountings. The mobile spiral is driven by an electric motor 2-pole (2900 rpm) cooled by the inlet refrigerant, the starter is directed. All compressors have full charge of oil polyester, suitable for use with refrigerant R410A. An electrical heater, located on the crankcase, is automatically activated when the unit is switch off in order to prevent the mixing of oil in the refrigerant. The control of cooling power is achieved through steps of parzialization in number equal to the number of compressors installed. When connecting in tandem there is an oil equalizing line with a level indicator.

User (side) heat exchanger

AISI 304 steel braze-welded plate exchanger, insulated with Black closed-cell flexible elastomeric foam (FEF) coupled with a 3 mm layer of reticulated foam in PE and an exterior embossed finishing PE film in aluminium in colour; total thickness 6+3 mm, thermal conductivity (λ) \leq 0,034 W/m·K.

A differential pressure switch, mounted on the water side, safeguard the flow rate and prevent ice from forming inside the evaporator. Maximum operating pressure exchanger: 15 bar on the water side and 45 bar on the refrigerant side

Fan section

Ventilation system composed by 800mm axial electric fans, protected to IP54, with external rotor and plastic-coated aluminium blades. Housed in aerodynamic hoods complete with safety grille. Brushless electronically commutated electrical motor and incorporated thermal protection.Continuous adjustment of fan rotation speed.

Refrigerant circuit

One or two independent refrigeration circuits made of copper, brazed and factory-assembled, complete with:

- Anti-acid dehydrator filter with solid cartridge,100% molecular sieve solid core from 3Å, particularly suitable for HFC and POE, PAG oil;
- Liquid flow and moisture indicator;
- Low and high pressure transducer;
- Electronic expansion valve;
- Low and high pressure safety pressure switch;
- Low and high pressure safety valve;
- Shut-off valve on liquid line;
- Service valves

Electrical panel

It is completely manufactured and wired in accordance with EN 60204.

The power supply section includes:

- General door lock switch, with bars for main power supply (400Vac/3ph+PE/50Hz);
- Isolating transformer for the auxiliary power supply circuit (400Vac/230Vac-12Vac);
- Compressor and fan protection fuses;
- Power supply contactor with thermal protection for compressor control;
- Phase control relay with minimum / maximum voltage intervention calibration
- Thermostated ventilation inside the electrical panel

The control section includes:

- Interface terminal with alphanumeric display;
- Displaying function of setting values, of analog inputs, error codes, alarm history and parameter index;
- Forced circulation function in case of frost risk;
- Keys for on/off switching and reset of alarms;
- Keys combination to constrain the defrosting process and constraining the pump at maximum rpm (if present);
- Remote/Local power on/off management of the unit;
- Digital input for the machine power ON/OFF;
- Analog input for enabling remote plant temperature sensor;
- Digital input for double set point enablement;
- Digital input for Summer/Winter mode activation (heat pump only);
- BMS connectivity predisposition (Modbus / Bacnet / Knx / Lonworks)
- · Thermoregulation and timing of the compressors;
- Fan motors speed regulation in evaporation/condensation;
- Dynamic set point management.

		00101	00100	00100	00140	04455	04477	04404	0.4000	0.4000	0.4050	0.4005	0 4 0 4 0
HWA1-A		02106	02120	02128	02140	04155	041//	04184	04209	04239	04258	04305	04349
Cooling	1.1.1	105	110	100	100	455	176	100			0.57		0.40
Cooling capacity (1)	KW	105	119	130	139	155	1/6	182	208	238	257	305	348
Power input (1)	KW	33,5	38,3	44,2	44,3	49,9	56,7	62,9	6/,1	/6,8	88,5	98,3	112
EER (1)	W/W	3,13	3,10	2,93	3,15	3,11	3,10	2,90	3,10	3,10	2,90	3,10	3,10
Cooling capacity (2)	kW	139	155	164	185	204	230	239	2//	314	333	405	458
Power input (2)	kW	35,7	40,8	46,8	47,5	52,9	60,9	67,8	/1,6	81,9	94,6	105	121
EER (2)	W/W	3,88	3,79	3,50	3,89	3,87	3,77	3,52	3,87	3,84	3,52	3,85	3,78
SEER (3)	W/W	4,13	4,12	4,11	4,27	4,11	4,11	4,10	4,14	4,24	4,10	4,16	4,12
Cooling capacity (8)	kW	61,9	70,6	77,8	82,0	91,5	103	109	123	144	158	184	211
Power input (8)	kW	29,9	34,1	39,3	39,5	45,4	50,8	55,8	59,7	68,8	79,4	88,5	101
EER (8)	W/W	2,07	2,07	1,98	2,08	2,02	2,04	1,95	2,06	2,09	1,99	2,08	2,10
Water flow (1)	L/s	5,0	5,7	6,2	6,5	7,2	8,4	8,7	9,9	11,4	12,3	14,7	16,6
Pressure drop (1)	kPa	17,5	20,7	16,1	27,8	21,1	16,7	19,1	24,8	34,2	35,4	32,0	28,8
Compressor													
Туре							Sc	croll					
Compressors	n°	2	2	2	2	4	4	4	4	4	4	4	4
Refrigerant circuits	n°	1	1	1	1	2	2	2	2	2	2	2	2
Refrigerant charge-Circuit 1 (4)	kg	10,5	10,5	10,5	15,0	13,0	13,0	13,0	13,0	13,5	13,5	19,5	20,0
Refrigerant charge-Circuit 2 (4)	kg	-	-	-	-	10,5	10,5	10,5	13,0	13,5	13,5	19,5	20,5
Fans													
Nominal air flow	l/s	10614	10714	11143	14649	14467	15868	15892	20647	20471	22231	29279	33255
Fan numbers	n°	2	2	2	3	3	3	3	4	4	4	6	6
Hydraulic circuit													
Max pressure hydronic kit	bar	6	6	6	6	6	6	6	6	6	6	6	6
Min. water volume (5)	L	427	535	535	699	409	533	533	533	669	669	874	874
Tank volume	L	390	390	390	705	420	420	420	520	520	520	705	705
Sound level													
Sound power (6)	dB(A)	86 std/ 85 SL/ 83 SSL	86 std/ 85 SL/ 83 SSL	87 std/ 86 SL/ 84 SSL	87 std/ 86 SL/ 84 SSL	87 std/ 86 SL/ 84 SSL	88 std/ 87 SL/ 85 SSL	90 std/ 89 SL/ 87 SSL					
Sound pressure (7)	dB(A)	54 std/ 53 SL/ 51 SSL	54 std/ 53 SL/ 51 SSL	55 std/ 54 SL/ 52 SSL	54,9 std/ 53,9 SL/ 51,9 SSL	54,9 std/ 53,9 SL/ 51,9 SSL	55,9 std/ 54,9 SL/ 52,9 SSL	55,8 std/ 54,8 SL/ 52,8 SSL	57,8 std/ 56,8 SL/ 54,8 SSL				
Electrical data													
Power supply							400Vac/3	P+PE/50H	Z				
Max. power input	kW	48,9	55,0	61,1	66,9	82,4	87,4	90,9	97,8	110,0	122,3	146,0	165,8
Max. current input	A	83,0	93,4	103,8	113,5	139,9	148,3	154,3	166,0	186,8	207,6	247,8	281,4
Weight													
Gross weight (9)	kg	1.080	1.080	1.090	1.510	1.620	1.620	1.620	1.950	1.960	1.960	2.670	2.850

Operation weight (9)

Data referred to the following condition:

Cooling: outdoor air temperature 35°C; water temperature inlet/outlet 12/7°C.
 Cooling: outdoor air temperature 35°C; water temperature inlet/outlet 23/18°C.

(4) Indicative data and subject to change. For the correct data, always refer to the technical label

on the unit.

kg

1.090

1.090

1.100

1.520

1.630

1.630

1.630

(5) The calculated value of minimum volume of water at the plant does not consider the volume of water contained in the internal exchanger (evaporator). With low external air temperature applications or low average loads required, the minimum volume of water to the system is obtained by doubling the indicated value.

(6) Condition (1); value determined on the basis of measurements carried out in accordance with the UNI EN ISO 9614-2 standard, in compliance with the requirements of the Eurovent certification.

(7) Value calculated from the sound power level using ISO 3744: 2010, referred to 10 m distance from the unit.

1.960

(8) Cooling version BT: outdoor air temperature 35 ° C, internal exchanger water temperature = -3 / -8 ° C. Fluid treated with 35% ethylene glycol.

1.970

1.980

2.690

2.870

(9) Weight referred to the standard version without hydronic kit and possible accessories. N.B. The performance data are indicative and could be subject to change. In addition, the performances declared in apex (1), (2), and (8) refer to the instantaneous power according to EN 14511. The declared data stated in the apex (6) is determined according to the UNI EN 14825.

Model		Size			Clearance recon	Heat exchanger			
	A [mm]	B [mm]	C [mm]	A1[mm]	A2 [mm]	B1 [mm]	B2 [mm]	Туре	Ø
02106	2860	1100	2350	1000	800	1000	1000	Victaulic	DN65 (2" 1/2)
02120	2860	1100	2350	1000	800	1000	1000	Victaulic	DN65 (2" 1/2)
02128	2860	1100	2350	1000	800	1000	1000	Victaulic	DN65 (2" 1/2)
02140	4060	1100	2350	1000	800	1000	1000	Victaulic	DN65 (2" 1/2)
04155	4060	1100	2350	1000	800	1000	1000	Victaulic	DN80 (3")
04177	4060	1100	2350	1000	800	1000	1000	Victaulic	DN80 (3")
04184	4060	1100	2350	1000	800	1000	1000	Victaulic	DN80 (3")
04209	2860	2200	2350	1000	800	1000	1000	Victaulic	DN80 (3")
04239	2860	2200	2350	1000	800	1000	1000	Victaulic	DN80 (3")
04258	2860	2200	2350	1000	800	1000	1000	Victaulic	DN80 (3")
04305	4060	2200	2350	1000	800	1000	1000	Victaulic	DN80 (3")
04349	4060	2200	2350	1000	800	1000	1000	Victaulic	DN80 (3")

* Depends on the hydronic version - check the technical bulletin

HWA1-A/H 02109÷04345

Air-Cooled reversible heat pump for outdoor installation

109 kW÷345 kW

The high efficiency air-cooled chillers and heat pumps of the HWA1-A and HWA1-A / H series are designed for outdoor installation, available in 24 sizes, 12 chillers and 12 heat pumps, so as to satisfy all system requirements in commercial, residential and industrial buildings.

Fitted accessories

2SFV	Double security valve with changeover valve	PD	Standard double pump
BT	BT version for low water temperatures	PD/SI	Double standard pump+tank
ACK6	Segnalazione Summer/Winter	PDAP	High pressure double pump
С	Ducted version	PDAP/SI	Double high pressure pump+tank
CC	Condensation control up to -20°C	PS	Standard pressure pump
СМ	Modbus communication module	PS/SI	Standard pressure pump+tank
СТ	Condensation control up to -10°C	PSAP	High pressure pump
DS	Chiller with desuperheater	PSAP/SI	High pressure pump+tank
EC	EC fan (included in versions C, BT, SSL)	RFM	Suction and discharge ball valve for compressors
GR1	Cooling circuit anti-intrusion grid	SAS	Remote probe
GR2	Condenser anti-intrusion grid	SH	Schuko plug (with magnetothermal switch)
GR3	Condenser and circuit anti-intrusion grid	SL	Silenced version
IM	Magnethermic switch for compressors and fans	SS	Soft starter
KA1	Heat exchanger + pump (if on board) electrical heaters	SSL	Super silenced version
KA2	Heat exchanger + pump (if on board) + inertial tank	TE1	Special pump gasket seal for glycol concentration over
	electrical heaters		40%
KS	Hoist ring kit	TR2	Al/Cu battery with anti-corrosion Silver Line treatment
LQ	Electrical board lighting		, ,
Loose a	ccessories		
AG	Anti-vibration rubber mounts	RV	Starting kit made by 2 grooved couplers and 2 straight
AM	Anti-vibration spring mounts		starting pipes
FY	Y-strainer	SAS	Remote probe
Hi_T\//15	Touch screen display		

Standard

i-CR

ISK

Remote probe enabling

Enable 2nd set point

v	er	sic	oni	
н	w,	41-	A/	Ή

Serial converter USB/RS485 (ISK)

Standard version chiller

an acoustic cc
Silenced ve
Super silen
Ductable v

Remote control

There are different types of hydronic kits to be combined with the reversible heat pump: with single/double pump standard/ high pressure, with or without tank:

rsion

ersion

ced version

nfiguration from the following:

/PS /PSAP /PD /PDAP /PS/SI /PSAP/SI /PD/SI /PDAP/SI

Standard pressure pump High pressure pump Double standard pressure pump High pressure double pump Standard pressure pump + tank High pressure pump + tank Double standard pressure pump + tank Double high pressure pump + tank

Compressor

Hermetic scroll complete with internal thermal protection. The compressor is isolated from the structure by interposition of special rubber mountings. The mobile spiral is driven by an electric motor 2-pole (2900 rpm) cooled by the inlet refrigerant, the starter is directed. All compressors have full charge of oil polyester, suitable for use with refrigerant R410A. An electrical heater, located on the crankcase, is automatically activated when the unit is switch off in order to prevent the mixing of oil in the refrigerant. The control of cooling power is achieved through steps of parzialization in number equal to the number of compressors installed. When connecting in tandem there is an oil equalizing line with a level indicator.

User (side) heat exchanger

AISI 304 steel braze-welded plate exchanger, insulated with Black closed-cell flexible elastomeric foam (FEF) coupled with a 3 mm layer of reticulated foam in PE and an exterior embossed finishing PE film in aluminium in colour; total thickness 6+3 mm, thermal conductivity (λ) \leq 0,034 W/m·K.

A differential pressure switch, mounted on the water side, safeguard the flow rate and prevent ice from forming inside the evaporator.

Maximum operating pressure exchanger: 15 bar on the water side and 45 bar on the refrigerant side.

Carpentry

Suitable for outdoor installation, consisting of thick profiles in hot galvanized steel sheet or painted with RAL 7035 polyester powder resistant to atmospheric agents.

Source (side) heat exchanger air

Finned exchanger, made from copper pipes arranged in staggered rows and mechanically expanded for better adherence to the collar of the fins. The fins are made of aluminium with a special corrugated surface, set a suitable distance apart to ensure maximum heat exchange efficiency. A proper liquid supply of the expansion valve is ensured by the subcooling circuit. Each finned heat exchanger is directly cooled by the air flow of its specific fans.

Fan section

Ventilation system composed of axial fans with 800mm diameter, with IP54 protection degree, with external rotor, with high aerodynamic efficiency aluminum blades with winglet profile (possibly covered with plastic material), housed in aerodynamic profile mouthpieces, complete with safety protection net. Brushless electric motor with electronic switching and built-in thermal protection. Continuous regulation of the fan rotation speed.

Refrigerant circuit

One or two independent refrigeration circuits made of copper, brazed and factory-assembled, complete with:

- Anti-acid dehydrator filter with solid cartridge;
- Liquid flow and moisture indicator;
- Low and high pressure transducer;
- Electronic expansion valve;
- Check valves;
- 4-Way reversing valve;
- Liquid receiver;
- Suction separator;
- Low and high pressure safety pressure switch;
- Low and high pressure safety valve;
- Shut-off valve on liquid line;
- Service valves

Electrical panel

- It is completely manufactured and wired in accordance with EN 60204.
- The power supply section includes:
- General door lock switch, with bars for main power supply (400Vac/3ph+PE/50Hz);
- Isolating transformer for the auxiliary power supply circuit (400Vac/230Vac-12Vac);
- Compressor and fan protection fuses;
- Power supply contactor with thermal protection for compressor control;
- Phase control relay with minimum / maximum voltage intervention calibration
- Thermostated ventilation inside the electrical panel

The control section includes:

- Interface terminal with alphanumeric display;
- Displaying function of setting values, of analog inputs, error codes, alarm history and parameter index;
- Water side protection of antifreeze pump (if present and on heat pump models);
- Keys for on/off switching and reset of alarms;
- Keys combination to constrain the defrosting process and constraining the pump at maximum rpm (if present);
- Remote/Local power on/off management of the unit;
- Digital input for the machine power ON/OFF;
- · Analog input for enabling remote plant temperature sensor;
- Digital input for double set point enablement;
- Digital input for Summer/Winter mode activation (heat pump only);
- BMS connectivity predisposition (Modbus / Bacnet / Knx / Lonworks)
- Thermoregulation and timing of the compressors;
- · Fan motors speed regulation in evaporation/condensation;
- Dynamic set point management.

HWAI-A/H		02109	UZIZI	02142	UZ148	02160	04170	04199	04215	04237	042/3	04304	04345
Cooling													
Cooling capacity (1)	kW	103	113	132	138	148	165	187	208	225	260	289	325
Power input (1)	kW	33,8	38,9	41,3	44,4	49,8	52,6	59,4	67,2	77,5	80,6	92,9	112
EER (1)	W/W	3,05	2,90	3,19	3,11	2,97	3,14	3,15	3,10	2,90	3,22	3,10	2,90
Cooling capacity (2)	kW	139	151	177	188	202	224	252	282	301	351	388	434
Power input (2)	kW	36,5	42,7	44,1	47,7	53,0	55,7	63,8	71,6	83,2	87,0	101	122
EER (2)	W/W	3,81	3,53	4,01	3,94	3,82	4,01	3,95	3,94	3,62	4,04	3,86	3,56
SEER (5)	W/W	4,35	4,36	4,38	4,73	4,50	4,61	4,64	4,71	4,53	4,65	4,73	4,42
Water flow (1)	L/s	4,9	5,4	6,3	6,6	7,1	7,9	8,9	10,0	10,8	12,4	13,8	15,5
Pressure drop (1)	kPa	21,7	20,1	26,5	24,3	20,2	21,7	26,5	24,7	27,2	18,8	24,9	17,9
Heating													
Heating capacity (3)	kW	113	125	148	154	166	188	207	223	246	286	316	356
Power input (3)	kW	27,6	30,9	36,6	37,7	41,4	46,0	50,7	54,8	61,1	69,2	78,3	88,5
COP (3)	W/W	4,09	4,05	4,04	4,08	4,01	4,08	4,09	4,07	4,02	4,13	4,04	4,02
Heating capacity (4)	kW	108	120	142	148	160	179	198	214	237	273	303	344
Power input (4)	kW	32,9	37,5	43,9	45,3	49,4	55,9	61,5	66,0	74,0	83,8	94,7	108
COP (4)	W/W	3,30	3,20	3,22	3,26	3,23	3,21	3,22	3,24	3,20	3,26	3,20	3,20
SCOP (6)	W/W	3,72	3,77	3,62	3,69	3,68	3,90	3,84	3,96	4,00	3,92	3,95	4,01
Water flow (4)	l/s	5,2	5,8	6,8	7,0	7,7	8,6	9,5	10,3	11,4	13,1	14,6	16,6
Use side heat exchanger load losses (4)	kPa	24,2	22,9	30,6	28,4	24,0	26,6	31,9	27,6	30,5	22,9	29,1	22,3
Energy efficiency (Water 35°C-55°C)		A+/A+	A+/A+	A+/A+	A+/A+	A+/A+	A++/A+						
Compressor													
Туре							Sc	roll					
Compressors	n°	2	2	2	2	2	4	4	4	4	4	4	4
Refrigerant circuits	n°	1	1	1	1	1	2	2	2	2	2	2	2
Refrigerant charge-Circuit 1 (7)	kg	26,5	27,0	34,5	42,0	40,0	22,0	18,0	25,5	28,5	43,0	47,0	50,0
Refrigerant charge-Circuit 2 (7)	kg	-	-	-	-	-	22,0	18,0	24,0	28,5	36,0	34,0	30,0
Fans													
Nominal air flow	l/s	10021	9984	15109	15088	15045	20954	20888	20815	20738	31370	31264	31109
Fan numbers	n°	2	2	3	3	3	4	4	4	4	6	6	6
Hydraulic circuit													
Max pressure hydronic kit	bar	6	6	6	6	6	6	6	6	6	6	6	6
Min. water volume (8)	L	490	630	630	820	820	480	610	610	780	1.020	1.020	1.290
Tank volume	L	390	390	705	705	705	520	520	520	520	705	705	705
Sound level													
Sound power (9)	dB(A)	88 std/ 87 SL/ 84 SSL	88 std/ 87 SL/ 84 SSL	88 std/ 87 SL/ 84 SSL	88 std/ 87 SL/ 84 SSL	88 std/ 87 SL/ 84 SSL	89 std/ 88 SL/ 85 SSL	89 std/ 88 SL/ 85 SSL	89 std/ 88 SL/ 85 SSL	90 std/ 89 SL/ 86 SSL	90 std/ 89 SL/ 86 SSL	91 std/ 90 SL/ 87 SSL	92 std/ 91 SL/ 88 SSL
Sound pressure (10)	dB(A)	56 std/ 55 SL/ 52 SSL	56 std/ 55 SL/ 52 SSL	55,9 std/ 54,9 SL/ 51,9 SSL	55,9 std/ 54,9 SL/ 51,9 SSL	55,9 std/ 54,9 SL/ 51,9 SSL	56,9 std/ 55,9 SL/ 52,9 SSL	56,9 std/ 55,9 SL/ 52,9 SSL	56,9 std/ 55,9 SL/ 52,9 SSL	57,9 std/ 56,9 SL/ 53,9 SSL	57,8 std/ 56,9 SL/ 53,9 SSL	58,8 std/ 57,8 SL/ 54,8 SSL	59,8 std/ 58,8 SL/ 55,8 SSL
Electrical data													
Power supply							400Vac/3	P+PE/50H	7				
Max. power input	kW	48,9	55,0	63,1	66,9	73,0	87,9	92,8	97,8	110,0	123,8	139,8	160,1

Max. current input	A	83,0	93,4	107,1	113,5	123,9	149,2	157,6	166,0	186,8	210,2	237,4	2/1,8
Weight													
Gross weight (11)	kg	1.180	1.210	1.470	1.530	1.530	2.030	2.060	2.100	2.130	2.680	2.880	2.900
Operation weight (11)	kg	1.190	1.220	1.480	1.540	1.540	2.040	2.070	2.110	2.140	2.700	2.900	2.930
Data referred to the following condition: (8) Condition (1): value determined on the basis of measurements carried out in accord								cordance					

Cooling: outdoor air temperature 35°C; water temperature inlet/outlet 12/7°C.
 Cooling: outdoor air temperature 35°C; water temperature inlet/outlet 23/18°C.
 Heating: outdoor air temperature 7°C d.b. 6°C w.b.; water temperature inlet/outlet 30/35°C.
 Heating: outdoor air temperature 7°C d.b. 6°C w.b.; water temperature inlet/outlet 40/45°C.
 Internal exchanger water reference temperature = 12/7°C.

(6) Indicative data and subject to change. For the correct data, always refer to the technical label on the unit.

(7) The calculated value of minimum volume of water at the plant does not consider the volume of water contained in the internal exchanger (evaporator). With low external air temperature appli- formances declared in apex (1), (2), and (8) refer to the instantaneous power according to EN cations or low average loads required, the minimum volume of water to the system is obtained by 14511. The declared data stated in the apex (6) is determined according to the UNI EN 14825. doubling the indicated value.

with the UNI EN ISO 9614-2 standard, in compliance with the requirements of the Eurovent certification.

(9) Value calculated from the sound power level using ISO 3744: 2010, referred to 10 m distan-

(a) Value calculated from the sound power level using 150 3744. 2010, referred to 161 mustaline ce from the unit. (10) Cooling version BT: outdoor air temperature 35 ° C, internal exchanger water temperature = -3 / -8 ° C. Fluid treated with 35% ethylene glycol. (11) Weight referred to the standard version without hydronic kit and possible accessories.

N.B. The performance data are indicative and could be subject to change. In addition, the per-

Model	Size				Clearance recon	Heat exchanger			
	A [mm]	B [mm]	C [mm]	A1[mm]	A2 [mm]	B1 [mm]	B2 [mm]	Туре	Ø
02109	2860	1100	2350	1000	800	1000	1000	Victaulic	DN65 (2" 1/2)
02121	2860	1100	2350	1000	800	1000	1000	Victaulic	DN65 (2" 1/2)
02142	4060	1100	2350	1000	800	1000	1000	Victaulic	DN65 (2" 1/2)
02148	4060	1100	2350	1000	800	1000	1000	Victaulic	DN65 (2" 1/2)
02160	4060	1100	2350	1000	800	1000	1000	Victaulic	DN65 (2" 1/2)
04176	2860	2200	2350	1000	800	1000	1000	Victaulic	DN80 (3")
04199	2860	2200	2350	1000	800	1000	1000	Victaulic	DN80 (3")
04215	2860	2200	2350	1000	800	1000	1000	Victaulic	DN80 (3")
04237	2860	2200	2350	1000	800	1000	1000	Victaulic	DN80 (3")
04273	4060	2200	2350	1000	800	1000	1000	Victaulic	DN80 (3")
04304	4060	2200	2350	1000	800	1000	1000	Victaulic	DN80 (3")
04345	4060	2200	2350	1000	800	1000	1000	Victaulic	DN80 (3")

* Depends on the hydronic version - check the technical bulletin

HWA-A 08365÷12599* **HWA-A** 12667÷121031

Air-Cooled liquid chiller for outdoor installation

367 kW÷1035 kW

The new multi-compressors chiller line doesn't need any water tank thanks to the partialisation from 6 to 10 steps.

The management software manages the compressors working cycle according to the load requirements and let them start alternatively to guarantee an equal number of working hours.

Technical Features

- Compressors. Scroll with oil sight glass. They are fitted with internal overheat protection and crankcase heater if needed, installed on rubber shock absorbers.
- Fans. EC axial fans directly coupled to the motor. A safety fan guard is fitted on the air flow discharge.
- Condenser. Two copper tube and aluminium finned coils.

(*) Eurovent certified product range

- Evaporator. In AISI 316 stainless steel braze welded plates type with two independent circuits on the arefrigerant side and one on the water side.
- Managing system and microprocessor regulation.
- Water circuit.Includes: evaporator, temperature sensor, antifreeze sensor, differential water pressure switch and manual air vent.

Fitted accessories Inverter double circulating pump BT Low water temperature device PDI СС Condensation control up to -20 °C PS Circulating pump СТ Condensation control up to 0 °C PSI Inverter single circulating pump Cooling circuit shut-off valve on liquid line DS Desuperheater RFL EC EC inverter fans RFM Cooling circuit shut-off valve on discharge line ECH High external static pressure EC inverter fan RT Total heat recovery FE Antifreeze heater for evaporator SI Inertial tank IM Magnetothermic switches SL Silenced version IS RS 485 serial interface SS Soft start PD Double circulating pump TX Coil with pre-coated fins Loose accessories Rubber vibration dampers MN AG High and low pressure gauges AM Spring shock absorbers RP Coil protection guards CR Remote control panel Customizations GL Packing in wooden crate for special transport Versions HWA-A Cooling only HWA-A/SSL Super silenced cooling only

_

Ρ

	HWA-A		08365	10402	10442	12493	12544	12599	12667	12749	12833	12924	121031
L	STD	mm	4.000	4.000	5.000	5.000	5.000	5.000	5.000	6.200	6.200	7.200	7.200
	SSL	mm	4.000	4.000	5.000	5.000	5.000	5.000	6.200	7.200	7.200		
Р	STD	mm	2.200	2.200	2.200	2.200	2.200	2.200	2.200	2.200	2.200	2.200	2.200
	SSL	mm	2.200	2.200	2.200	2.200	2.200	2.200	2.200	2.200	2.200		
Н	STD	mm	2.100	2.100	2.100	2.100	2.100	2.100	2.100	2.100	2.100	2.100	2.100
	SSL	mm	2.100	2.100	2.100	2.100	2.100	2.100	2.100	2.100	2.100		

₹X

7 j

L

١.

iD

HWA-A 08365÷12599 *		08365	10402	10442	12493	12544	12599
(1) Cooling capacity	kW	366,5	402,6	443,5	494,5	545,4	601,4
(1) Power input	kW	123,0	132,9	156,2	171,1	185,5	212,5
(1) EER	W/W	2,98	3,03	2,84	2,89	2,94	2,83
(2) SEER	W/W	4,34	4,55	4,56	4,55	4,55	4,55
Compressors	n.	4+4	5+5	5+5	6+6	6+6	6+6
Refrigerant circuits	n.	2	2	2	2	2	2
Capacity steps	n.	8	8	8	10	10	10
Water flow	l/s	17,53	19,25	21,21	23,65	26,09	28,76
Pressure drop	kPa	59	47	59	49	60	58
EC Inverter Fans	n.	4	6	6	6	б	8
Air flow	m³/s	23,3	23,3	25,3	30,7	30,7	30,7
Power input	kW	7,6	7,6	7,6	10,2	10,2	10,2
Power supply	V~/Ph/Hz 400/3/50						
Max Running current	A	250	274	316	350	375	422
Max inrush current	A	418	407	384	518	543	600
(3) Sound pressure STD	dB(A)	73	73	72	73	75	76
(3) Sound pressure SL	dB(A)	69	70	69	70	72	73
(3) Sound pressure SSL	dB(A)	67	66	66	67	69	70
Pump head	kPa	145	140	110	165	145	135
Water connections	DN	80	80	80	80	80	80
Water connections pump unit	DN	100	100	100	100	100	150
STD HWA-A							
(4) Transport weight	kg	2566	2610	3179	3294	3463	3517
(4) Operation weight	ka	2590	2640	3210	3330	3500	3560

(1) Chilled water from 12 to 7 °C, ambient air temperature 35 °C - EN14511
 (2) Seasonal low temperature cooling energy efficiency
 * Eurovent certified product range

(3) Sound pressure level measured in free field conditions at 1 m from the unit (Q=2) according to ISO 3744

HWA-A 12667÷121031		12667	12749	12833	12924	121031
(1) Cooling capacity	kW	671	751	845	942	1.051
(1) Power input	kW	243	275	303	336	365
(1A) Cooling capacity	kW	669	749	842	939	1.047
(1A) Power input	kW	246	277	306	339	369
(1A) EER	W/W	2,72	2,70	2,75	2,77	2,84
Compressors	n.	6+6	6+6	6+6	6+6	6+6
Refrigerant circuits	n.	2	2	2	2	2
Capacity steps	n.	10	10	10	10	10
Water flow	l/s	32,0	35,9	40,3	44,3	49,5
Pressure drop	kPa	49	41	51	42	52
Water connections	inch	6"	6"	6"	б"	6"
STD - STD/SL						
Fans	n.	8	10	10	12	12
Air flow	m³/s	38,6	47,8	47,8	57,2	57,2
Power input	kW	16	20	20	24	24
SSL						
Fans	n.	8	12	12		
Air flow	m³/s	32,8	46,1	46,1		
Power input	kW	10,2	15,2	15,2		
Power supply	V~/Ph/Hz			400/3/50		
Max Running current	А	528	602	667	718	761
Max inrush current	А	702	810	875	979	1022
(3) Sound pressure						
STD	dB(A)	73,5	73,5	73,5	73,5	74,5
STD/SL	dB(A)	70,5	70,5	70,5	70,5	71,5
SSL	dB(A)	65,5	64,5	65,5		
Pump power	kW	5,5	11	11	11	11
Pump head	kPa	161	212	183	171	131
Expansion vessel	I	18	18	18	18	18
Water connections	DN	150	150	150	150	150
STD HWA-A	_					
(4) Transport weight	kg	3682	4200	4518	4918	5044
(4) Operation weight	kg	3730	4260	4580	5238	5354

(1) Chilled water from 12 to 7 °C, ambient air temperature 35 °C (1A) Chilled water from 12 to 7 °C, ambient air temperature 35 °C - EN14511

(3) Sound pressure level measured in free field conditions at 1 m from the unit (Q=2) according to ISO 3744

HWA-A/H 08365÷12599* **HWA-A/H** 12667÷121031

Air-Cooled reversible heat pump for outdoor installation

367 kW÷1035 kW

The new multi-compressors chiller line doesn't need any water tank thanks to the partialisation from 6 to 10 steps.

The management software manages the compressors working cycle according to the load requirements and let them start alternatively to guarantee an equal number of working hours.

(*) Eurovent certified product range

Technical Features

- Compressors. Scroll with oil sight glass. They are fitted with internal overheat protection and crankcase heater if needed, installed on rubber shock absorbers.
- Fans. Axial fans directly coupled to a three-phase electric motor with external rotor. A safety fan guard is fitted on the air flow discharge.
- Condenser. Two copper tube and aluminium finned coils.
- Evaporator. In AISI 316 stainless steel braze welded plates type with two independent circuits on the arefrigerant side and one on the water side.
- Antifreeze electrical heater factory mounted
- Managing system and microprocessor regulation.
- Water circuit.Includes: evaporator, temperature sensor, antifreeze sensor, differential water pressure switch and manual air vent.

Fitted accessories

BT CC CT DS EC ECH FE IM IS PD	Low water temperature device Condensation control up to -20 °C Condensation control up to 0 °C Desuperheater EC inverter fans High external static pressure EC inverter fan Antifreeze heater for evaporator Magnetothermic switches RS 485 serial interface Double circulating pump	PDI PS PSI RFL RFM RT SI SL SS TX	Inverter double circulating pump Circulating pump Inverter single circulating pump Cooling circuit shut-off valve on liquid line Cooling circuit shut-off valve on discharge line Total heat recovery Inertial tank Silenced version Soft start Coil with pre-coated fins					
Loose a	Loose accessories							
AG AM CR	Rubber vibration dampersSpring shock absorbersRemote control panel		High and low pressure gauges Coil protection guards					
Customizations			Packing in wooden crate for special transport					
Versions HWA-A/H Cooling only HWA-A/H/SSL Super silenced cooling only								

M/IX/I

	HWA-A/H		08365	10402	10442	12493	12544	12599	12667	12749	12833	12924	121031
L	STD	mm	4.000	4.000	5.000	5.000	5.000	5.000	5.000	6.200	6.200	7.200	7.200
	SSL	mm	4.000	4.000	5.000	5.000	5.000	5.000	6.200	7.200	7.200		
Ρ	STD	mm	2.200	2.200	2.200	2.200	2.200	2.200	2.200	2.200	2.200	2.200	2.200
	SSL	mm	2.200	2.200	2.200	2.200	2.200	2.200	2.200	2.200	2.200		
Н	STD	mm	2.100	2.100	2.100	2.100	2.100	2.100	2.100	2.100	2.100	2.100	2.100
	SSL	mm	2.100	2.100	2.100	2.100	2.100	2.100	2.100	2.100	2.100		

HWA-A/H 08365÷12599 *		08365	10402	10442	12493	12544	12599
(1) Cooling capacity	kW	366,5	402,6	443,5	494,5	545,4	601,4
(1) Power input	kW	123,8	133,8	157,3	171,7	186,1	213,3
(1) EER	W/W	2,96	3,01	2,83	2,88	2,93	2,82
(2) SEER	W/W	4,01	4,08	4,14	4,14	4,20	4,24
(2) Heating capacity	kW	401,6	441,6	510,7	564,7	620,8	684,8
(2) Power input	kW	134,8	143,4	166,9	185,2	205,6	227,5
(2) COP	W/W	2,98	3,08	3,06	3,05	3,02	3,01
(5) SCOP	W/W	3,22	3,21	3,22	3,19	3,19	3,19
Compressors	n.	4+4	5+5	5+5	6+6	6+6	6+6
Refrigerant circuits	n.	2	2	2	2	2	2
Capacity steps	n.	8	8	8	10	10	10
Water flow	l/s	16,2	17,15	20,11	22,69	24,46	28,52
(1) Pressure drop	kPa	59	47	59	49	60	58
(2) Pressure drop	kPa	84,5	65,8	85	70,6	86,1	90,3
EC Inverter Fans	n.	4	6	6	б	6	8
Air flow	m³/s	23,3	23,3	25,3	30,7	30,7	30,7
Power supply	V~/Ph/Hz			400/	3/50		
Max Running current	А	265	284	336	367	398	458
Max inrush current	А	394	416	465	496	527	632
Pump head	kPa	201	194	155	191	173	166
Water connections	DN	80	80	80	80	80	80
Water connections pump unit	DN	100	100	100	100	100	150
HWA-A STD - STD HWA-A							
(4) Transport weight	kg	2566	2610	3179	3294	3463	3517
(4) Operation weight	kg	2590	2640	3210	3330	3500	3560

(1) Acqua refrigerata da 12 a 7 °C, temp. aria esterna 35 °C - EN14511
(2) Acqua riscaldata da 40 a 45 °C, temp. aria esterna 7 °C b.s. / 6 °C b.u. - EN14511
(4) Temp. acqua scambiatore interno = 40/45°C, temp. aria entrante allo scambiatore esterno = 7°C

D.B./6°C W.B. (5) Condizioni climatiche medie; Tbiv=-7°C, temp. acqua scambiatore interno = 30/35°C. (*) Gamma prodotti certificati Eurovent

HWA-A/H 12667÷121031		12667	12749	12833	12924	121031
(1) Cooling capacity	kW	671	751	845	942	1.051
(1) Power input	kW	243	275	303	336	365
(1A) Cooling capacity	kW	669	749	842	939	1.047
(1A) Power input	kW	246	277	306	339	369
(1A) EER	W/W	2,72	2,70	2,75	2,77	2,84
(2) Heating capacity	kW	776	861	962	1.078	1.210
(2) Power input	kW	249	282	312	349	383
(2A) Heating capacity	kW	777	862	963	1.079	1.211
(2A) Power input	kW	250	283	313	350	384
(2A) COP	W/W	3,11	3,05	3,08	3,08	3,15
Compressors	n.	6+6	6+6	6+6	6+6	6+6
Refrigerant circuits	n.	2	2	2	2	2
Capacity steps	n.	10	10	10	10	10
Water flow	l/s	32,0	35,9	40,3	44,3	49,5
Pressure drop	kPa	49	41	51	42	52
Water connections	inch	6"	6"	6"	6"	6"
S	TD - STD/SL					
Fans	n.	8	10	10	12	12
Air flow	m³/s	38,6	47,8	47,8	57,2	57,2
Power input	kW	16	20	20	24	24
	SSL					
Fans	n.	8	12	12		
Air flow	m³/s	32,8	46,1	46,1		
Power input	kW	10,2	15,2	15,2		
Power supply	V~/Ph/Hz			400/3/50		
Max Running current	А	528	602	667	718	761
Max inrush current	А	702	810	875	979	1022
Pump power	kW	5,5	11	11	11	11
Pump head	kPa	161	212	183	171	131
Expansion vessel		18	18	18	18	18
Water connections	DN	150	150	150	150	150
AWH	STD - STD HWA	-A				
(4) Transport weight	kg	3682	4200	4518	4918	5044
(4) Operation weight	kg	3730	4260	4580	5238	5354

(4) Operation weight

Chilled water from 12 to 7 °C, ambient air temperature 35 °C
 Chilled water from 12 to 7 °C, ambient air temperature 35 °C - EN14511
 Heated water from 40 to 45 °C, ambient air temperature 7 °C d.b./6 °C w.b.

(2A) Heated water from 40 to 45 °C, ambient air temperature 7 °C d.b./6 °C w.b. - EN14511 (3) Sound pressure level measured in free field conditions at 1 m from the unit (Q=2) according to ISO 3744

M/X/1 69

Airmust

Wire controller & thermostat

Remote control with thermostat function for VE, HCN, HCNA, and GrimperFan (all models) Fan-Coil units, in 3V versions for units with AC motor at different speeds and 010 for units in MB version (with brushless motor).

Airmust 3V A1 / 010 - A1

Touch screen control for wall installation

- Color touch screen 3.5" TFT
- Power supply 230V
- European standard mounting
- 3-speed version (3V) fan coils or 0-10V version (010)
- 2 pipes and 4 pipes systems
- Dry input for window contact / water temperature probe inlet
- Automatic brightness
- Room temperature probe
- Relative humidity probe
 - Temperature and humidity history display
- Working mode management
- Automatic change from summer to winter
- Automatic time change management (daylight saving)
- Multilanguage
- Weekly schedule
- 2.4G Wi-Fi
- Mobile phone APP available on Android and iOS stores
- Modbus

•

Airmust BMCP

Touch screen control for on-board mounting (VSL model only) or wall mounted (all models)

- LCD display with five function keys
- Power supply 230V
- Wall mounting (on board mountaing VSL only)
- For 3 speed fan coils
- 2 pipes and 4 pipes systems
- Dry input for window contact
- Water temperature probe input (probe included)
- Room temperature sensor
- Working mode management
- Automatic change from summer to winter
- Weekly schedule
- Modbus

Airmust BM

Touch screen control for wall installation

- 🗢 Su 18:01h 语 ŵ +
- LCD display with four function keys •
- Power supply 230V Wall mounting For 3-speed fan coils with or without valve ٠
- Room temperature probe
- Working mode management Weekly schedule •
- •
- 2.4G Ŵi-Fi • •
 - Mobile phone APP available on Android and iOS stores
- Modbus

• •

Grimper Fan

Ultra flat fan coil

0,9 kW÷3,4 kW

The Grimper range in all its models holds the record of being the thinnest design fan coil on the market, with its 12 cm is 10% thinner than its competitors in the slim segment.

One feature that distinguishes the range is the absence of front intake grilles, thanks to the innovative ventilation system that improves battery performance working at negative pressure. The absence of front grilles also allows you to install Grimper Fan in a versatile way even in the most confined spaces.

DC Inverter technology: maximum silence. Optional on-board machine control.

ł

Left or right hydraulic connections always available without extra work

Wi-fi controls for easy management by smartphone

La co

 Low energy consumption

Dehumidification

Accessories

2V2BSL	Straight 2-way valve kit with micro for BSL	3V2VSL34	3-way by-pass valve kit with micro 2 pipes for VSL 34
2V2MSL	Straight 2-way valve kit with micro for MSL 12-17	AIRMUST-BM	On-board machine control (VSL only) or wall-mounted control with Wi-Fi and
2V2MSL	Straight 2-way valve kit with micro		Modbus.
	for MSL 25	PEP09	Rear aesthetic panel VSL 09
2V2VSL	Straight 2-way valve kit with micro	PEP18	Rear aesthetic panel VSL 18
	for VSL 09-27	PEP27	Rear aesthetic panel VSL 27
2V2VSL34	Straight 2-way valve kit with micro	PEP34	PRear aesthetic panel VSL 34
	for VSL 34	P-VSL	VSL ground fixing feet
3V2BSL	3-way by-pass valve kit with micro	RAD18	Front radiant panel VSL 09-18
	2 pipes for BSL	RAD34	Front radiant panel VSL 27-34
3V2MSL	3-way by-pass valve kit with micro	STSL	Minimum water temperature probe
	2 pipes for MSL 12-17	VASL09	Tray for horizontal installation VSL 09
3V2MSL	3-way by-pass valve kit 2 pipes	VASL18	Tray for horizontal installation VSL 18
	with micro for MSL 25	VASL27	Tray for horizontal installation VSL 27
3V2VSL	3-way by-pass valve kit 2 pipes	VASL34	Tray for horizontal installation VSL 34
	with micro for VSL 09-27		
3V4VSL	3-way by-pass valve kit 4 pipes		
	with micro for VSL		

Versions

Μ	S	L	
	~1		

Hydronic fan coil for high wall installation Hydronic fan coil for floor standing or ceiling installation BSL

Hydronic fan coil for bathrooms and and behing the doors

High wall installation

- Super thin thickness, only 12 cm
- Minimum noise level below the threshold of the audible, 20 dB(A)
- DC Inverter technology
- Low power consumption, only 4 Watts
- Modern design
- Front panel in tempered glass crystal
- Pleated stainless steel filters of unlimited duration
- Tangential aluminum fan for greater efficiency
- Standard remote control or wired remote control
- Digital indicator of the room temperature

Grimper Fan VSL

- Floor standing or ceiling installation
- Super thin thickness, only 12 cm
- Minimum noise level below the threshold of the audible, 20 dB (A)
- DC Inverter technology
- Low power consumption, only 4 Watts
- Modern design
- Front panel in tempered glass crystal
- Double facade, front and rear, on request
- Pleated stainless steel filters of unlimited duration
- Tangential aluminum fan for greater efficiency
- Control built-in or with remote wall panel
- Left or right hydraulic connections always available
 without extra work

Grimper Fan BSL

Floor standing installation with or without feet

- Super thin thickness, only 12 cm
- Minimum noise level below the threshold of the audible, 20 dB (A)
- DC Inverter technology
- Low power consumption, only 4 Watts
- Modern design
- Front panel in tempered glass crystal
- Radiant panel of 200Watt as standard
- Pleated stainless steel filters of unlimited duration
- Tangential aluminum fan for greater efficiency
- Infrared remote controller

MSL		12	17	25
Total cooling capacity	kW	1,20	1,70	2,45
Total heating capacity main exchanger	kW	1,68	2,45	3,30
Air flow rate (min-max)	m³/h	155-315	240-450	310-540
Electric power absorption (min-max)	W	4-11	5-14	8-17
Minimum sound pressure (SPL)	dB(A)	23,0	23,4	25,0
Width	mm	873	1065	1257
Height	mm	383	383	383
Depth	mm	122	122	122
Weight	kg	16	17	20
DC Inverter motor low power		si	si	si
Tangential aluminum fan		si	si	si
Remote control		si	si	si
LCD display		si	si	si
Pleated stainless steel filter		si	si	si
Front panel in tempered glass		si	si	si
Machine frame in powder-coated steel		si	si	si
Supply voltage	V-Hz	220-50	220-50	220-50

VSL		09	18	27	34
Total cooling capacity	kW	0,88	1,81	2,7	3,38
Total heating capacity main exchanger	kW	1,10	2,40	3,20	4,23
Air flow rate (min-max)	m³/h	80-180	155-315	240-450	310-540
Electric power absorption (min- max)	W	3-12	4-13	5-14	8-17
Minimum sound pressure (SPL)	dB(A)	20,5	21,6	23,5	21,7
Width	mm	681	873	1065	1257
Height*	mm	553	553	553	553
Depth	mm	122	122	122	122
Weight	kg	18	21	24	27
DC Inverter motor low power		si	si	si	si
Tangential aluminum fan		si	si	si	si
Remote control		no	no	no	no
LCD display		no	no	no	no
Pleated stainless steel filter		si	si	si	si
Front panel in tempered glass		si	si	si	si
Machine frame in powder-coated steel		si	si	si	si
Supply voltage	V-Hz	220-50	220-50	220-50	220-50

BSL		12
Total cooling capacity	kW	1,20
Total heating capacity main exchanger	kW	1,45
Air flow rate (min-max)	m³/h	120-225
Electric power absorption (min-max)	watt	4-11
Minimum sound pressure (SPL)	dB(A)	19,1
Width	mm	565
Height	mm	1100
Depth	mm	122
Weight	kg	18
DC Inverter motor low power		si
Tangential aluminum fan		si
Remote control		si
LCD display		si
Pleated stainless steel filter		si
Front panel in tempered glass		si
Unit frame in powder-coated steel		si
Supply voltage	V-Hz	220-50

Cooling test conditions: Room:27° C – 47% R.H. Water temp. (in/out):7/12°C - Heating test conditions: Room:20° C. Water temp. in:50. same water flow conditioning *Height without aesthetic feet

VE & VE/MB

Fan coil with AC asynchronous or Brushless DC motor

1,4 kW÷10,7 kW

Fancoil Brushless (only MB version)

- Modulating ventilation 0-100%
- Super quiet operation
- Highest well-being: the continuous variation 0-100% of the air flow (by means of the signal 0...10Vdc) is reflected in the modulation of the heating and cooling power by their instantaneous adaptation, to the actual needs of the room that to be conditioned and ensuring reduced fluctuations temperature, humidity and quiet noise.

Building Features

- Structure galvanized sheet with prepainted covering shell (in VMI-VMF-OMP-OMI models) and ABS details, complete with heat/sound insulation
- Regenerating filter and natural discharge moisture tray.
- Centrifugal 6-speed fans type, with 3 speeds connected in the

standard configuration.

- Heat exchanger in copper tubes and alluminium fins with hydrophilic surface treatment to rapid draining of moisture.
 It's recommended to use the kit valves for each type of system.
 - Attacchi idraulici Water connections $\Phi 1/2^{*}$ $\Phi 1/2^{*}$ $\Phi 1/2$

Left side water sockets

e Versioni senza mobile et Versions without cabinet B1 = 450 mm C1 = 215 mm

Dimensions - With cabinet

VE		13	23	33	43	53	63	73	83	93	103	93P	103P	113P	123P
A*	mm	670	670	870	870	1.070	1.070	1.270	1.270	1.470	1.470	1.470	1.470	1.670	1.670
В	mm	520	520	520	520	520	520	520	520	520	520	520	520	520	520
С	mm	220	220	220	220	220	220	220	220	220	220	220	220	220	220
Weight	kg	15	15,5	18,5	19	25	26	29	30	34	35	35	36	39	42

* In horizontal versions the width A is larger than 120 mm

Dimensior	ns - Nake	ed Versi	on												
VE		13	23	33	43	53	63	73	83	93	103	93P	103P	113P	123P
D*	mm	425	425	625	625	825	825	1.025	1.025	1.225	1.225	1.225	1.225	1.425	1.425
E	mm	450	450	450	450	450	450	450	450	450	450	450	450	450	450
F	mm	215	215	215	215	215	215	215	215	215	215	215	215	215	215
Eeight	kg	. 11	11,6	14	15	20	21	23,5	25	27,5	29	28,5	30	31	35

In nonzontal versions the width A is larger than 120 mm

Versions			
VMI	Vertical units with bottom inlet	OIP	Fitted horizontal units, rear inlet
VMF	Vertical units with front inlet	OII	Fitted horizontal units, bottom inlet
OMP	Horizontal units with rear inlet	VIP	Fitted vertical units whit P1 panel
OMI	Horizontal units with bottom inlet	VIP2	Fitted vertical units whit P2 panel
VII	Fitted vertical units, bottom inlet	ONP	Horizontal vertical units whit panel
VIF	Fitted vertical units, front inlet		

Versions

Mammoth type terminal board (included on the on board controller CVA-CVB-CVC-CBB-CVD1) In other cases must be ordered as an accessory. Industrial Hydronic

							3 ROWS								
VE		13	23	33	43	53	63	73	83	93	103	93P	103P	113P	123P
Cooling cap. (1) (*)	W	1.579	2.105	2.663	3.179	3.947	4.474	5.811	6.758	7.926	9.495	9.568	10.337	10.105	11.274
Sensible capacity (1) (*)	W	1.290	1.620	2.070	2.310	2.870	3.230	4.330	4.800	5.670	6.620	6.200	7.300	7.640	8.360
Heating cap. (2) (*)	W	1.870	2.455	2.990	3.355	4.080	4.720	6.000	6.650	7.750	9.050	8.415	9.895	10.550	11.600
Heating cap. (3) (*)	W	3.740	4.910	5.980	6.710	8.160	9.440	12.000	13.300	15.500	18.100	16.830	19.790	21.100	23.200
Pressure drop															
Cooling (*)	kPa	14,5	18,1	20,5	23,0	25,1	26,8	27,2	30,0	31,9	32,4	37,4	38,4	34,4	37,0
Heating (3) (*)	kPa	15,9	19,2	20,1	20,0	20,9	23,2	22,6	22,6	23,8	22,9	28,1	27,4	29,2	30,5
max		3/0	400	500	550	6/0	/20	1.000	1.050	1.280	1.310	1.450	1.500	1.910	1.940
Air flow (*) med	m³/h	285	308	400	440	590	634	890	935	1.139	1.166	1.291	1.335	1.643	1.668
min		226	244	305	336	462	497	650	683	8/0	891	986	1 770	1490	1.513
Looting (^)	I/n	2/2	362	458	547	5/9	/69	1 0 2 2	1.162	1.303	1.633	1.4/4	1.7/8	1.738	1.939
Heating (3) (^)	1/n	322	422	514	5//	702	- 812	1.032	1.144	1.333	1.557	1.447	1.702	1.815	1.995
Power input (*)	VV	55	55	85	85	/5	/5	145	145	1/5	1/5	225	225	285	285
Sound pressure (4)	dB(A)	24 31 38	25 31 38	30 38 44	31 38 45	26 33 37	27 34 37	34 41 43	35 41 45	39 46 48	40 46 49	43 48 51	44 49 52	45 48 51	46 48 51
ower supply	V~/Ph/ Hz							23)/1/50						
Water connections	"G	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"
Condensing drain	mm	20	20	20	20	20	20	20	20	20	20	20	20	20	20
Motors	n°	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Fans	n°	1	1	1	1	2	2	2	2	2	2	2	2	2	2
						HOT W/	ATER EXC	HANGER							
VE		13	23	33	43	HOT W/ 53	ATER EXC 63	HANGER 73	83	93	103	93P	103P	113P	123P
VE Heating cap. (2) (*)	W	13 940	23 990	33 1.590	43 1.675	HOT W/ 53 2.190	ATER EXC 63 2.275	HANGER 73 3.145	83 3.230	93 3.995	103 4.055	93P 4.350	103P 4.450	113P 5.545	123P 5.600
VE Heating cap. (2) (*) Heating cap. (3) (*)	W	13 940 1.880	23 990 1.980	33 1.590 3.180	43 1.675 3.350	HOT W/ 53 2.190 4.380	63 2.275 4.550	HANGER 73 3.145 6.290	83 3.230 6.460	93 3.995 7.990	103 4.055 8.110	93P 4.350 8.700	103P 4.450 8.900	113P 5.545 11.090	123P 5.600 11.200
VE Heating cap. (2) (*) Heating cap. (3) (*) Pressure drop (3) (*)	W W kPa	13 940 1.880 7,3	23 990 1.980 8,0	33 1.590 3.180 11,7	43 1.675 3.350 12,9	HOT W/ 53 2.190 4.380 21,3	ATER EXC 63 2.275 4.550 22,9	HANGER 73 3.145 6.290 41,1	83 3.230 6.460 43,3	93 3.995 7.990 37,7	103 4.055 8.110 38,8	93P 4.350 8.700 44,6	103P 4.450 8.900 46,7	113P 5.545 11.090 48,4	123P 5.600 11.200 49,3
VE Heating cap. (2) (*) Heating cap. (3) (*) Pressure drop (3) (*)	W W kPa	13 940 1.880 7,3	23 990 1.980 8,0	33 1.590 3.180 11,7	43 1.675 3.350 12,9	HOT W/ 53 2.190 4.380 21,3	ATER EXC 63 2.275 4.550 22,9 BRUSHLES	HANGER 73 3.145 6.290 41,1 SS	83 3.230 6.460 43,3	93 3.995 7.990 37,7	103 4.055 8.110 38,8	93P 4.350 8.700 44,6	103P 4.450 8.900 46,7	113P 5.545 11.090 48,4	123P 5.600 11.200 49,3
VE Heating cap. (2) (*) Heating cap. (3) (*) Pressure drop (3) (*) VE	W W kPa	13 940 1.880 7,3 13	23 990 1.980 8,0 23	33 1.590 3.180 11,7 33	43 1.675 3.350 12,9 43	HOT W/ 53 2.190 4.380 21,3 E 53	ATER EXC 63 2.275 4.550 22,9 BRUSHLES 63	HANGER 73 3.145 6.290 41,1 SS 73	83 3.230 6.460 43,3 83	93 3.995 7.990 37,7 93	103 4.055 8.110 38,8 103	93P 4.350 8.700 44,6 93P	103P 4.450 8.900 46,7 103P	113P 5.545 11.090 48,4 113P	123P 5.600 11.200 49,3 123P
VE Heating cap. (2) (*) Heating cap. (3) (*) Pressure drop (3) (*) VE Cooling cap. (1)	W W kPa W	13 940 1.880 7,3 13 1.810- 880	23 990 1.980 8,0 23 2.320- 1.130	33 1.590 3.180 11,7 33 2.830- 1.400	43 1.675 3.350 12,9 43 3.220- 1.600	HOT W/ 53 2.190 4.380 21,3 E 53 4.630- 2.130	63 2.275 4.550 22,9 BRUSHLES 63 5.070- 2.330	HANGER 73 3.145 6.290 41,1 SS 73 6.010- 3.060	83 3.230 6.460 43,3 83 6.820- 3.470	93 3.995 7.990 37,7 93 7.440- 3.780	103 4.055 8.110 38,8 103 8.790- 4.460	93P 4.350 8.700 44,6 93P	103P 4.450 8.900 46,7 103P	113P 5.545 11.090 48,4 113P	123P 5.600 11.200 49,3 123P -
VE Heating cap. (2) (*) Heating cap. (3) (*) Pressure drop (3) (*) VE Cooling cap. (1) Heating cap. (2)	W W kPa W W	13 940 1.880 7,3 13 1.810- 880 985- 2.325	23 990 1.980 8,0 2.320- 1.130 1.233- 2.915	33 1.590 3.180 11,7 33 2.830- 1.400 1.670- 3.409	43 1.675 3.350 12,9 43 3.220- 1.600 1.557- 3.625	HOT W/ 53 2.190 4.380 21,3 E 53 4.630- 2.130 2.063- 5.209	ATER EXC 63 2.275 4.550 22,9 BRUSHLES 63 5.070- 2.330 2.285- 5.794	HANGER 73 3.145 6.290 41,1 3S 73 6.010- 3.060 2.949- 6.615	83 3.230 6.460 43,3 83 6.820- 3.470 2.174- 7.149	93 3.995 7.990 37,7 93 7.440- 3.780 3.388- 7.650	103 4.055 8.110 38,8 103 8.790- 4.460 3.898- 8.800	93P 4.350 8.700 44,6 93P -	103P 4.450 8.900 46,7 103P -	113P 5.545 11.090 48,4 113P -	123P 5.600 11.200 49,3 123P -
VE Heating cap. (2) (*) Heating cap. (3) (*) Pressure drop (3) (*) VE Cooling cap. (1) Heating cap. (2) Heating cap. (3)	W W kPa W W W	13 940 1.880 7,3 1810- 880 985- 2.325 4.680- 1.970	23 990 1.980 8,0 2.320- 1.130 1.233- 2.915 5.860- 2.470	33 1.590 3.180 11,7 33 2.830- 1.400 1.670- 3.409 6.840- 2.940	43 1.675 3.350 12,9 43 3.220- 1.600 1.557- 3.625 7.250- 3.120	HOT W/ 53 2.190 4.380 21,3 E 53 4.630- 2.130 2.063- 5.209 10.510- 4.130	ATER EXC 63 2.275 4.550 22,9 BRUSHLES 63 5.070- 2.330 2.285- 5.794 11.650- 4.580	TANGER 73 3.145 6.290 41,1 SS 73 6.010- 3.060 2.949- 6.615 13.280- 5.900	83 3.230 6.460 43,3 6.820- 3.470 2.174- 7.149 14.300- 6350	93 3.995 7.990 37,7 93 7.440- 3.780 3.780 3.388- 7.650 15.300- 6.780	103 4.055 8.110 38,8 103 8.790- 4.460 3.898- 8.800 17.600- 7.800	93P 4.350 8.700 44,6 93P - -	103P 4.450 8.900 46,7 103P - -	113P 5.545 11.090 48,4 113P - - -	123P 5.600 11.200 49,3 123P - - -
VE Heating cap. (2) (*) Heating cap. (3) (*) Pressure drop (3) (*) VE Cooling cap. (1) Heating cap. (2) Heating cap. (3) Hot water exchanger (2)	W W kPa W W W W	13 940 1.880 7,3 1 1.810- 880 985- 2.325 4.680- 1.970 1.209- 510	23 990 1.980 8,0 2.320- 1.130 1.233- 2.915 5.860- 2.470 1.211- 515	33 1.590 3.180 11,7 33 2.830- 1.400 1.670- 3.409 6.840- 2.940 1.855- 800	43 1.675 3.350 12,9 43 3.220- 1.600 1.557- 3.625 7.250- 3.120 1.865- 805	HOT W/ 53 2.190 4.380 21,3 E 53 4.630- 2.130 2.063- 5.209 10.510- 4.130 2.880- 1.135	63 2.275 4.550 22,9 BRUSHLES 63 5.070- 2.330 2.285- 5.794 11.650- 4.580 2.883- 1.140	Tanger 73 3.145 6.290 41,1 SS 73 6.010- 3.060 2.949- 6.615 13.280- 5.900 3.553- 1.580	83 3.230 6.460 43,3 6.820- 3.470 2.174- 7.149 14.300- 6350 3.561- 1.590	93 3.995 7.990 37,7 93 7.440- 3.780 3.388- 7.650 15.300- 6.780 4.045- 1.790	103 4.055 8.110 38,8 103 8.790- 4.460 3.898- 8.800 17.600- 7.800 4.045- 1.795	93P 4.350 8.700 44,6 93P - - -	103P 4.450 8.900 46,7 103P - - -	113P 5.545 11.090 48,4 113P - - - -	123P 5.600 11.200 49,3 123P - - - -
VE Heating cap. (2) (*) Heating cap. (3) (*) Pressure drop (3) (*) VE Cooling cap. (1) Heating cap. (2) Heating cap. (3) Hot water exchanger (2) Hot water exchanger (3)	W W kPa W W W W W	13 940 1.880 7,3 1.810- 880 2.325 4.680- 1.970 1.209- 510 2.440	23 990 1.980 8,0 2.320- 1.130 1.233- 2.915 5.860- 2.470 1.211- 515 -1.030	33 1.590 3.180 11,7 33 2.830- 1.400 1.670- 3.409 6.840- 2.940 1.855- 800 3.730-	43 1.675 3.350 12,9 43 3.220- 1.600 1.557- 3.625 7.250- 3.120 1.865- 805	HOT W/ 53 2.190 4.380 21,3 E 53 4.630- 2.130 2.063- 5.209 10.510- 4.130 2.880- 1.135 5.800	ATER EXC 63 2.275 4.550 22,9 BRUSHLES 63 5.070- 2.330 2.285- 5.794 11.650- 4.580 2.883- 1.140 -2.280	ANGER 73 3.145 6.290 41,1 SS 73 6.010- 3.060 2.949- 6.615 13.280- 5.900 3.553- 1.580 7.140- 3.170	83 3.230 6.460 43,3 6.820- 3.470 2.174- 7.149 14.300- 6350 3.561- 1.590 7.140- 3.170	93 3.995 7.990 37,7 93 7.440- 3.780 3.388- 7.650 15.300- 6.780 4.045- 1.790 8.090	103 4.055 8.110 38,8 103 8.790- 4.460 3.898- 8.800 17.600- 7.800 4.045- 1.795 3.590	93P 4.350 8.700 44,6 93P - - - -	103P 4.450 8.900 46,7 103P - - - -	113P 5.545 11.090 48,4 113P - - - - - -	123P 5.600 11.200 49,3 123P - - - - - -
VE Heating cap. (2) (*) Heating cap. (3) (*) Pressure drop (3) (*) VE Cooling cap. (1) Heating cap. (2) Heating cap. (3) Hot water exchanger (2) Hot water exchanger (3) Air flow	W W kPa W W W W W W W W W	13 940 1.880 7,3 13 1.810- 880 2.325 4.680- 1.970 1.209- 510 2.440 537	23 990 1.980 8,0 2.320- 1.130 1.233- 2.915 5.860- 2.470 1.211- 515 -1.030	33 1.590 3.180 11,7 33 2.830- 1.400 1.670- 3.409 6.840- 2.940 1.855- 800 3.730- 625-	43 1.675 3.350 12,9 43 3.220- 1.600 1.557- 3.625 7.250- 3.120 1.865- 805 -1.610 153	HOT W/ 53 2.190 4.380 21,3 E 53 4.630- 2.130 2.063- 5.209 10.510- 4.130 2.880- 1.135 5.800 1.022	ATER EXC 63 2.275 4.550 22,9 BRUSHLES 63 5.070- 2.330 2.285- 5.794 11.650- 4.580 2.883- 1.140 -2.280 1-215	ANGER 73 3.145 6.290 41,1 SS 73 6.010- 3.060 2.949- 6.615 13.280- 5.900 3.553- 1.580 7.140- 3.170 1.184- 306	83 3.230 6.460 43,3 83 6.820- 3.470 2.174- 7.149 14.300- 6350 3.561- 1.590 7.140- 3.170 1.184- 306	93 3.995 7.990 37,7 93 7.440- 3.780 3.388- 7.650 15.300- 6.780 4.045- 1.790 8.0900 1.255	103 4.055 8.110 38,8 103 8.790- 4.460 3.898- 8.800 17.600- 7.800 4.045- 1.795 3.590	93P 4.350 8.700 44,6 93P - - - - -	103P 4.450 8.900 46,7 103P - - - - -	113P 5.545 11.090 48,4 113P - - - - - - - - - -	123P 5.600 11.200 49,3 123P - - - - - - - - -
VE Heating cap. (2) (*) Heating cap. (3) (*) Pressure drop (3) (*) VE Cooling cap. (1) Heating cap. (2) Heating cap. (3) Hot water exchanger (2) Hot water exchanger (3) Air flow Power input (5)	W W kPa W W W W W W W W W W W	13 940 1.880 7,3 13 1.810- 880 985- 2.325 4.680- 1.970 1.209- 510 2.440 537	23 990 1.980 8,0 2.320- 1.130 1.233- 2.915 5.860- 2.470 1.211- 515 -1.030 -127 9	33 1.590 3.180 11,7 33 2.830- 1.400 1.670- 3.409 6.840- 2.940 1.855- 800 3.730- 625-	43 1.675 3.350 12,9 43 3.220- 1.600 1.557- 3.625 7.250- 3.120 1.865- 805 -1.610 -153	HOT W/ 53 2.190 4.380 21,3 E 53 4.630- 2.130 2.063- 5.209 10.510- 4.130 2.880- 1.135 5.800 1.02 ² 1	G3 2.275 4.550 22,9 3RUSHLES 63 5.070- 2.330 2.285- 5.794 11.650- 4.580 2.883- 1.140 -2.280 1-215 0 0	ANGER 73 3.145 6.290 41,1 SS 73 6.010- 3.060 2.949- 6.615 13.280- 5.900 3.553- 1.580 7.140- 3.170 1.184- 306 11	83 3.230 6.460 43,3 83 6.820- 3.470 2.174- 7.149 14.300- 6350 3.561- 1.590 7.140- 3.170 1.184- 306 11	93 3.995 7.990 37,7 93 7.440- 3.780 3.780 3.388- 7.650 15.300- 6.780 4.045- 1.790 8.090 1.255 1.255	103 4.055 8.110 38,8 103 8.790- 4.460 3.898- 8.800 17.600- 7.800 4.045- 1.795 3.590 5-323 1	93P 4.350 8.700 44,6 93P - - - - - - - -	103P 4.450 8.900 46,7 103P - - - - - -	113P 5.545 11.090 48,4 113P - - - - - - - -	123P 5.600 11.200 49,3 123P - - - - - - - -
VE Heating cap. (2) (*) Heating cap. (3) (*) Pressure drop (3) (*) VE Cooling cap. (3) Heating cap. (2) Heating cap. (3) Hot water exchanger (2) Hot water exchanger (3) Air flow Power input (5) Sound pressure (5)	W W kPa	13 940 1.880 7,3 1810- 880 985- 2.325 4.680- 1.970 1.209- 510 2.440 537 0 2.440	23 990 1.980 8,0 2.320- 1.130 1.233- 2.915 5.860- 2.470 1.211- 515 -1.030 -127 9 23	33 1.590 3.180 11,7 33 2.830- 1.400 1.670- 3.409 6.840- 2.940 1.855- 800 3.730- 625- 2 2	43 1.675 3.350 12,9 43 3.220- 1.600 1.557- 3.625 7.250- 3.120 1.865- 805 -1.610 -153 -6	HOT W/ 53 2.190 4.380 21,3 F 53 4.630- 2.130 2.063- 5.209 10.510- 4.130 2.880- 1.135 5.800 1.022 1 2.880- 1.022 1 2.880- 1.022 1 2.880- 1.022 1 2.880- 1.022 1 2.880- 1.022 1 2.880- 1.022 1 2.880- 1.022 1 2.880- 1.022 1 2.880- 1.022 1 2.880- 1.022 1 2.880- 1.022 1 2.880- 1.125 1.022 1 2.880- 1.022 1.02	ATER EXC 63 2.275 4.550 22,9 BRUSHLES 63 5.070- 2.330 2.285- 5.794 11.650- 4.580 2.883- 1.140 -2.280 1-215 0 2.2	ANGER 73 3.145 6.290 41,1 SS 73 6.010- 3.060 2.949- 6.615 13.280- 5.900 3.553- 1.580 7.140- 3.170 1.184- 306 11 24	83 3.230 6.460 43,3 6.820- 3.470 2.174- 7.149 14.300- 6350 3.561- 1.590 7.140- 3.170 1.184- 306 11 24	93 3.995 7.990 37,7 93 7.440- 3.780 3.388- 7.650 15.300- 6.780 4.045- 1.790 8.090 1.255 1.255 1.255	103 4.055 8.110 38,8 103 8.790- 4.460 3.898- 8.800 17.600- 7.800 4.045- 1.795 3.590 5-323 1 5	93P 4.350 8.700 44,6 93P - - - - - - - - - - - - - - -	103P 4.450 8.900 46,7 - - - - - - - - - - - - - - - - - - -	113P 5.545 11.090 48,4 113P - - - - - - - - - - - - - - - - - - -	123P 5.600 11.200 49,3 123P - - - - - - - - - - - - - - - - -
VEHeating cap. (2) (*)Heating cap. (3) (*)Pressure drop (3) (*)Pressure drop (3) (*)Cooling cap. (3)Heating cap. (2)Heating cap. (2)Heating cap. (3)Hot water exchanger (2)Hot water exchanger (3)Air flowPower input (5) Sound pressure (5)Power supply	W W kPa W W W W W W W W W W W W V V Ph/ HZ	13 940 1.880 7,3 13 1.810- 880 9.85- 2.325 4.680- 1.970 510 2.440 537 0 2	23 990 1.980 8,0 2.320- 1.130 1.233- 2.915 5.860- 2.470 1.211- 5.15 -1.030 -127 9 23	33 1.590 3.180 11,7 33 2.830- 1.400 1.670- 3.409 6.840- 2.940 1.855- 800 3.730- 6.25- 0.2 2.940 3.730- 6.25- 0.2 2.940 3.730-	43 1.675 3.350 12,9 43 3.220- 1.600 1.557- 3.625 7.250- 3.120 1.865- 805 1.53 9 6	HOT W/ 53 2.190 4.380 21,3 E 53 4.630- 2.130 2.063- 5.209 10.510- 4.130 2.880- 1.35 5.800 1.022 1 2.30/	G3 2.275 4.550 22,9 3RUSHLES 63 5.070- 2.330 2.285- 5.794 11.650- 4.580 2.883- 1.140 -2.280 1-215 0 -2 12 /1/50	HANGER 73 3.145 6.290 41,1 55 73 6.010- 3.060 2.949- 6.615 13.280- 5.900 3.553- 1.580 7.140- 3.170 1.184- 306 11 24	83 3.230 6.460 43,3 83 6.820- 3.470 2.174- 7.149 14.300- 6350 3.561- 1.590 7.140- 3.1700 1.184- 306 11 24	93 3.995 7.990 37,7 93 7.440- 3.780 3.388- 7.650 15.300- 6.780 4.045- 1.790 8.090 1.255 1.255 1.255 1.255	103 4.055 8.110 38,8 103 8.790- 4.460 3.898- 8.800 17.600- 7.800 4.045- 1.795 3.590 5-323 1 5	93P 4.350 8.700 44,6 93P - - - - - - - - - - - - - -	103P 4.450 8.900 46,7 103P - - - - - - - - - - - - - - - - - - -	113P 5.545 11.090 48,4 113P - - - - - - - - - - - - - - - - - - -	123P 5.600 11.200 49,3 123P - - - - - - - - - - - - - - - - - - -
VE Heating cap. (2) (*) Heating cap. (3) (*) Pressure drop (3) (*) VE Cooling cap. (1) Heating cap. (2) Heating cap. (2) Heating cap. (3) Hot water exchanger (2) Hot water exchanger (3) Air flow Power input (5) Sound pressure (5) Power supply	W W kPa W W W W W W W W W W W U Q W V C/Ph/ Hz	13 940 1.880 7,3 13 1.810- 885- 2.325 4.680- 1.970 1.209- 510 2.440 537 0 2	23 990 1.980 8,0 2.320- 1.130 1.233- 2.915 5.860- 2.470 1.211- 515 -1.030 -127 9 23	33 1.590 3.180 11,7 33 2.830- 1.400 1.670- 3.409 6.840- 2.940 1.855- 800 3.730- 625- 9 2 2	43 1.675 3.350 12,9 43 3.220- 1.600 1.557- 3.625 7.250- 3.120 1.865- 805 -1.610 -153 - 6 0-10	HOT W/ 53 2.190 4.380 21,3 E 53 4.630- 2.130 2.063- 5.209 10.510- 4.130 2.880- 1.135 5.800 1.022 1 2 230/	G3 2.275 4.550 22,9 3RUSHLES 63 5.070- 2.330 2.285- 5.794 11.650- 4.580 2.883- 1.140 -2.280 1.140 -2.280 1.140 -2.15 0 /1/50 2	ANGER 73 3.145 6.290 41,1 SS 73 6.010-3.060 2.949-6.615 13.280-5.900 3.553-1.580 7.140-3.1700 1.184-306 11 24	83 3.230 6.460 43,3 83 6.820-3.470 2.174-7.149 7.149 14.300-6350 3.561-1.590 7.140-3.170 1.184-306 11 24	93 3.995 7.990 37,7 93 7.440- 3.780 3.388- 7.650 15.300- 6.780 4.045- 1.790 8.090 1.255 1.790 1.255 1.25	103 4.055 8.110 38,8 103 8.790- 4.460 3.898- 8.800 17.600- 7.800 4.045- 1.795 3.590 5-323 1 5	93P 4.350 8.700 44,6 93P - - - - - - - - - - - - - - - - - - -	103P 4.450 8.900 46,7 103P - - - - - - - - - - - - - - - - - - -	113P 5.545 11.090 48,4 113P - - - - - - - - - - - - - - - - - - -	123P 5.600 11.200 49,3 123P - - - - - - - - - - - - -
VE Heating cap. (2) (*) Heating cap. (3) (*) Pressure drop (3) (*) VE Cooling cap. (1) Heating cap. (2) Heating cap. (2) Heating cap. (3) Hot water exchanger (2) Hot water exchanger (3) Air flow Power input (5) Sound pressure (5) Power supply Signal Motors	W W kPa W W W W W W W W W W W V W V V C/Ph/ Hz Vdc n°	13 940 1.880 7,3 13 1.810- 880 2.325 4.680- 1.970 1.209- 510 2.440 537 0 2 1	23 990 1.980 8,0 2.320- 1.130 1.233- 2.915 5.860- 2.470 1.211- 515 -1.030 -127 9 23	33 1.590 3.180 11,7 33 2.830- 1.400 1.670- 3.409 6.840- 2.940 1.855- 800 3.730- 625- 2 2 1	43 1.675 3.350 12,9 43 3.220- 1.600 1.557- 3.625 7.250- 3.120 1.865- 805 -1.610 -153 -6 0-10 1	HOT W/ 53 2.190 4.380 21,3 E 53 4.630- 2.130 2.063- 5.209 10.510- 4.130 2.880- 1.135 5.800 1.02 ² 1 2 230/ 1	ATER EXC 63 2.275 4.550 22,9 3RUSHLES 63 5.070- 2.330 2.285- 5.794 11.650- 4.580 2.883- 1.140 -2.280 1-215 0 -2 (1/50 1	ANGER 73 3.145 6.290 41,1 SS 73 6.010- 3.060 2.949- 6.615 13.280- 5.900 3.553- 1.580 7.140- 3.170 1.184- 306 11 24	83 3.230 6.460 43,3 83 6.820- 3.470 2.174- 7.149 14.300- 6.350- 3.561- 1.590 7.140- 3.1700 1.184- 306 11 24	93 3.995 7.990 37,7 93 7.440- 3.780 15.300- 6.780 4.045- 1.790 8.090 1.255 1.790 8.090 1.255 1 1 2 0-10	103 4.055 8.110 38,8 103 8.790- 4.460 3.898- 8.800 17.600- 7.800 4.045- 1.795 3.590 5-323 1 5 1	93P 4.350 8.700 44,6 93P - - - - - - - - - - - - - - - - - - -	103P 4.450 8.900 46,7 103P - - - - - - - - - - - - - - - - - - -	113P 5.545 11.090 48,4 113P - - - - - - - - - - - - - - - - - - -	123P 5.600 11.200 49,3 123P - - - - - - - - - - - - -
VE Heating cap. (2) (*) Heating cap. (3) (*) Pressure drop (3) (*) VE Cooling cap. (3) Heating cap. (2) Heating cap. (2) Heating cap. (3) Hot water exchanger (2) Hot water exchanger (3) Air flow Power input (5) Sound pressure (5) Power supply Signal Motors Fans	W W kPa W W W W W W W W W W V W U U U C C Ph/ Hz	13 940 1.880 7,3 13 1.810- 880 985- 2.325 4.680- 1.970 1.209- 510 2.440 537 0 1 1 1 1 1 1	23 990 1.980 8,0 2.320- 1.130 1.233- 2.915 5.860- 2.470 1.211- 515 -1.030 -127 9 23 -1 1 1	33 1.590 3.180 11,7 33 2.830- 1.400 1.670- 3.409 6.840- 2.940 1.855- 800 3.730- 625- 2 1 1 1 1	43 1.675 3.350 12,9 43 3.220- 1.600 1.557- 3.625 7.250- 3.120 1.865- 805 -1.610 -153 - 6 0-10 1 1	HOT W/ 53 2.190 4.380 21,3 E 53 4.630- 2.130 2.063- 5.209 10.510- 4.130 2.880- 1.135 5.800 1.02 ² 1 2 230/ 1 2 230/ 1 2 2 2 2 2 2 2 2 2 2 2 2 2	ATER EXC 63 2.275 4.550 22,9 BRUSHLES 63 5.070- 2.330 2.285- 5.794 11.650- 4.580 2.883- 1.140 -2.280 1-215 0 -2 (1/50 1 2 1 2	ANGER 73 3.145 6.290 41,1 SS 73 6.010- 3.060 2.949- 6.615 13.280- 5.900 3.553- 1.580 7.140- 3.170 1.184- 306 11 24 1 2	83 3.230 6.460 43,3 83 6.820- 3.470 2.174- 7.149 14.300- 6.350- 3.561- 1.590 7.140- 3.1700 1.184- 306 11 24 1 24	93 3.995 7.990 37,7 93 7.440- 3.780 3.388- 7.650 15.300- 6.780 4.045- 1.790 8.090 1.255 1 1 2 0-10 1 2	103 4.055 8.110 38,8 103 8.790- 4.460 3.898- 8.800 17.600- 7.800 4.045- 1.795 3.590 5-323 1 5 1 2	93P 4.350 8.700 44,6 93P - - - - - - - - - - - - - - - - - - -	103P 4.450 8.900 46,7 103P - - - - - - - - - - - - - - - - - - -	113P 5.545 11.090 48,4 113P - - - - - - - - - - - - - - - - - - -	123P 5.600 11.200 49,3 - - - - - - - - - - - - - - - - - - -

Left side water sockets

Capacities and air flow rates referred in terms of prevalence 0 Pa. For different static pressure, refer air flow variation diagrams. Note:

- Entering air temperature: 27°C d.b./19,5°C w.b. In/Out water temperature: 7°C /12°C
 Entering air temperature: 20°C d.b. In/Out water temperature: 45°C / 40°C

- (3) In/Out water temperature: 70°C / 60°C
 (4) At a distance of 2 m and with reverberation time of 0.5 s.
 (5) 3Vdc input signal
 (*) Max speed

Fitted accessories

	BC	Auxiliary coil 1 rank		cvc	On board mounted electronic controll 230Vac with off/summer/ winter+3speeds+thermostat with- without valves (Mammoth terminal board already included)
	VA	Auxiliary drain pan for vertical versions (included in horizontal versions)	(a)	СВВ	On board brushless controll 2/4pipes unit with-without valves (Mammoth terminal board already included). Available with the electrical resistances RA and RB.
	CVA	OFF/3-speed switch (Mammoth terminal board already included)	Ø	CVD1	On board controll 230 Vac for controll 2/4 pipes unit with/without valves (Mammoth terminal board already included). Available with the electrical resistances RA and RB.
	CVB	OFF/3-speed switch Winter- Summer switch+Bulb room thermostat (Mammoth terminal board already included)	~	SND- W4	Water temperature probe (type NTC 4700 Ohm @ 25°C) with minimum temperature settable. Cable length 1 meter. Alternative to TMB thermostat.
	тмв	Water low temperature thermostat automatically shuts down the ventilation when the inlet water temperature to the coil is below 32°C in heating mode (Winter mode).	G	MOR	Mammoth type terminal board (included on the on board controller CVA-CVB-CVC-CBB-CVD1) In other cases must be ordered as an accessory
	SDI.4 X3A	Card with 4 by 3A output (suitable to control up to max No. 4 3-Speed 3A motors ; ex. No. 4 small fan-coils). To be combined only in case of AC motors. Contacts: 4x 3(0,3)A 230Vac		3V2	3-way valve with actuator 230V for 2 pipes units
2.	2V2	2-way valve with actuator 230V for 2 pipes units	and the second s	3V4	3-way valve with actuator 230V heating coil for 4 pipes units
	2V4	2-way valve with actuator 230V for 4 pipes units		RA	Electrical heater 230V (0,7 kW - 2 kW). Power relay and safety thermostat included. Not available separately.
	TEL	Remote control management system. Motherboard + Air sensor + Water sensor - I.R. reciever + I.R. Remote control (control 2-4 pipe units, with/without valves). Fan 7A-230Vac. Valves: 2A-230Vac.	P	RB	Electrical heater 230V (1 kW - 3 kW). Power relay and safety thermostat included. Not available separately.

Loose accessories

	PA	Air intake plenum with spigots (PA, PM)	VE Spigots (N° x Ø 200/180/160 mm)	13/23 1 x Ø	33/43 2 x Ø	53/63 2 x Ø	73/83 3 x Ø	93P/103P 4 x Ø	113Р/123Р 4 x Ø
V **	Ρ	Pedestal (Supplied separately)	(manageria)	P2	Pa wit	nel ma :h cont	ide of p roll par	pre-painte nel doors	ed steel
	P1	Panel made of pre-painted steel		FTI	Fa ste	lse frar el for	ne mae versior	de of galv Is VIP	/anizes
	PMI	Air supply plenum with spigots for versions VIP and ONP	P	РСРВ	Ce	entral c	losing l	oack pan	el
	PCPF	Central closing back panel		PCB	Bc gri	ttom c II	losing	panel wit	hout
	РМ	Air supply plenum with spigots Plénum de raccords à section circulaires de décharge		CRA	23 far 2 p or	OV wa n selec pipes p withou	ll therm tor + C lant ma ıt 230\	nostat. 3 s off/On se anageme / on-off v	speeds lector + nt with ⁄alves
TIE .	СВР	Digital wall thermostat 230V/24V. On-off or brushless fan motor, 2 or 4 pipes plant management with or without on-off valve or 0.10V with 230V or 24V alimentation.	AI	RMUS 3V	Wa T fur far wit	all-mou nction ncoil wi th or w	unted t contro ith Wi-l ithout	hermosta I for 3-sp Fi and Mc valves	it eed odbus,
	AIRMUST 010	Wall-mounted thermostat function control for Brushless motor 0-10V fancoil, with Wi-Fi and Modbus, with or without valves							

MI Hydronic Highwall

2,7 kW÷4,4 kW

The MAXA hydronic high wall is designed to meet the demanding requirements for efficiency, quiet operation and good looks. The microprocessor assures accurate environmental control. 3-way valve on board.

Unit in A.b.s. with high mechanical characteristics and resistence to ageing; DC fan motor, the water coil has a large heat transfer surface is equipped with purge air valve and purge water valve; equipped with boot deflector blades and independent directional vanes, supply air can automatically be distributed and customized to direct the air; all function controlled by the LCD remote control handset unit; cool, heat, three fan speeds and auto mode; manual-restart, timer function

As A Standard

Three-way diverter valve 230 V, with compact electric actuator, normally closed and equipped with protection, air purge valve, LCD remote control, clean contact for remote ON-OFF, modbus input, collection basin and condensate drain.

Micro Limit Switch

The unit is equipped with a "micro limit switch" located on the three-way diverting valve. This microswitch is connected to a special terminal board from which the signal can be used for various purposes. In particular, this free contact is useful for creating plant automation systems.

А	С	Dime	nsions	26A3	35A3	42A3
		А	mm	915	915	1072
		В	mm	290	290	315
		С	mm	230	230	230

on left

МІ		2643	3543	4243
(1) Cooling capacity	kW	2 7/2 59/2 39	3 81/3 3/2 88	4 47/3 98/3 48
(1) Cooling capacity	kBTU/h	9 2/8 8/8 1	12/11 2/9 8	15 2/13 5/11 8
Power input	W	13/11/10	34/22/15	26/18/13
Water flow		0 48/0 46/0 42	0.67/0.57/0.51	0 77/0 68/0 61
Pressure dron water	kPa	31 61/28 63/25 36	56 75/41 23/33 02	41 17/33 54/27 05
(2) Heating capacity	kW	2 94/2 8/2 58	4 3/3 65/3 09	4 84/4 23/3 62
(2) Heating capacity	kBTII/b	10/0 5/8 8	1/ 6/12 //10 5	16 5/1/ //12 2
(2) Heating Capacity	N/	11/11/0	21/20/17	02/16/12
Water flow		0 E1 /0 40 /0 46	0.72/0.64/0.66	22/10/12
		0,51/0,49/0,40	0,73/0,04/0.30	0,84/0,73/0,04
Pressure drop water	кРа	32,66/34,89/30,24	51,86/47,53/35,69	36,82/33,83/26,26
Absorbed current	A	0,2	0,4	0,3
(3) Press. sonora / Sound pressure				
MAX - MED - MIN	dB(A)	32/30/27	45/39/35	38/34/30
Water connections	Ø	3/4"	3/4"	3/4"
Weight	kg	12,7	12,7	15,1
Power supply	V~/Ph/Hz		230/1/50	
Air flow	m³/h	492/454/400	825/689/590	862/741/634
Coil				
Rows		2	2	2
Max. working-pressure	MPa		1.6	
Diameter	mm		Φ7	
Condensing drain	mm		ODФ20	
It not fitted with condensate nump	(2)Heating cap	acity Entering air temperatu	re: 20°C d.h. Max speed	

(1)Cooling capacity:Entering air temperature: 27°C d.b./ 19°C w.b. Max speed In/Out water temperature: 7°C / 12°C Max speed

In/Out water temperature: 45°C / 40°C Max speed (3) Noise is tested in semi-anechoic test room.

MXX

HCA1 HCA1/4

DC brushless hydronic cassettes

2,0 kW÷6,1 kW

MAXA hydronic cassettes with brushless DC motor are designed to fully meet efficiency requirements,

silence and aesthetics required by the market.

The microprocessor control ensures an accurate comfort in the environment. The modbus input allows a quick match to external BMS systems.

The small dimensions meet the installation requirements in the suspended ceilings thanks to the reduced measures of 57×57 cm or 84×84 cm in the more powerful versions.

Unit composition

- Finned batteries for heat exchange with high efficiency and low pressure drop.
- Internal insulation with closed cells expanded enough to limit heat dispersion and noise emissions to a minimum.
- Automatic fins adjustment.
- Build-in Drain water pump for lifting the condensing up to a maximum of 500 mm.

KIT VALVOLE

- **3V2C** 2 pipes 3 way valve kit (HCA 22-29-35-42)
- **3V2CG** 2 pipes 3 way valve kit (Necessary for HCA 60)
- **3V4C** 4 pipes 3 way valve kit (HCA 22-35-50)
- **3V4CG** 4 pipes 3 way valve kit (Necessary for HCA 60)

Kit valves for systems with modulating pump

- **2V2C** 2 pipes 2 way valve kit (HCA 22-29-35-42)
- 2V2CG 2 pipes 2 way valve kit (HCA 60)2V4C 4 pipes 2 way valve kit (HCA 35-50)
- 2V4CG 4 pipes 2 way valve kit (HCA 60)

KIT for 3-way / 2-WAY valve

The kit, necessary for size 60, is composed by: a) n° 2 nipples / n° 1 nipples

b) n° 4 o-ring / n° 2 o-ring

c) n° 2 copper joints / n° 1 copper joints

d) n° 13 way valve – 4 connections / n° 12 way valve – 2 connections e) n° 10N / OFF actuators / n° 10N / OFF actuators

WRC11	Multi functions accessory compact wired controller	WRC16	It can connect up to 16 indoor uni ts with a single wire controller throught XYE ports
Versions HCA1	Cassette for 2-pipe systems with electronic control and wireless controller	HCA1/4	Cassette for 4-pipe systems with electronic control and wireless controller

Dimensio	ons	HCA1 22	HCA1 29	HCA1 35 HCA1/4 35	HCA1 42 HCA1/4 50	HCA1 60 HCA1/4 60
А	mm	647	647	647	647	950
В	mm	647	647	647	647	950
С	mm	50	50	50	50	45
D	mm	575	575	575	575	840
E	mm	575	575	575	575	840
F	mm	261	261	261	261	300
Weight	kg	19	19	19	19	33,5

HCA1		22	29	35	42	60
(1) Cooling capacity	W	2.000	2.980	3.960	4.200	6.120
(1) Cooling capacity	BTU/h	6.826	10.171	13.515	14.335	20.888
(1) Power input	W	5	15	28	43	75
(2) Heating capacity	W	2.240	2.610	4.630	4.950	6. 270
(2) Heating capacity	BTU/h	7.645	8.908	15.802	16.894	21.400
(2) Power input	W	5	15	28	33	76
Sound pressure (3)						
MAX - MED - Min	dB(A)	39/33/27	39/33/27	42/36/30	43/38/32	44/40/34
Air flow	m³/h	322	535	719	781	1229

HCA1/4		35	50	60
(1) Cooling capacity	W	3.080	3.050	5.620
(1) Cooling capacity	BTU/h	10.512	10.410	19.181
(1) Power input	W	37	32	60
(2) Heating capacity	W	5.520	5.970	7.660
(2) Heating capacity	BTU/h	18.840	20.376	26.144
(2) Power input	W	28	32	61
Sound pressure (3)				
MAX - MED - Min	dB(A)	42/35/30	44/39/31	44/39/33
Air flow	m³/h	723	731	1389

Entering air temperature: 27°C d.b./19,5°C w.b. maximum speed In/Out water temperature: 7°C / 12°C maximum speed
 Entering air temperature: 20°C d.b. maximum speed In water temperature: 50°C maximum speed
 At a distance of 1 m and with reverberation time of 0.5 s. maximum speed

HCN

Modular terminal units slim/reduced with Brushless DC and AC Asynchronous motor

6 kW÷20 kW

- It has a self-supporting structure made of galvanized sheet with thermal and acoustic insulation (version S) or sandwich double panels 20mm thick with outer painted sheet with white RAL 9002 (version D); with ceiling/wall mounting holes, of contained dimensions and optimized encumbrance.
- Drain pan made with dual slope.
- Heat exchange coils with high efficiency made of copper tubes and aluminium fins, standard connections are located on the right side, 1 coil for a 2-pipe system; 2 coils for a 4-pipe system.
- Centrifugal fans with double air inlet aluminium blades of large diameter with 3-speed, mounted on elastic supports and dampers.
- The unit is provided with a of "Mammoth" type terminal board IP20 installed outside the unit.
- The basic units are supplied without air filter in order to allow the customer to choose between the available filtering sections as accessories; even the remote control is an accessory.

Single panel, horizontal naked Single panel, horizontal naked S-OII S-OIP terminal, rear air intake terminal, bottom air intake Double panel, horizontal naked Double panel, horizontal naked D-OIP D-OII terminal, rear air intake terminal, bottom air intake Versions S-OIP Single panel, horizontal naked terminal, S-OII Single panel, horizontal naked terminal, rear air intake bottom air intake D-OIP Double panel, horizontal naked terminal, D-OII Double panel, horizontal naked terminal, rear air intake bottom air intake

Nomenclature

Versioni

When ordering, always specify complete model like the example.

HCN		60	75	86	103	130	136	150	170	200
Cooling cap. (1) (*)	W	6.010	7.480	8.590	10.300	12.900	13.600	15.000	17.200	20.200
Sensible capacity (1) (*)	W	4.570	5.560	6.160	8.100	9.950	10.800	11.100	13.300	14.900
Heating cap. (2) (*)	W	6.550	7.900	8.300	11.700	14.400	15.650	15.200	19.400	20.400
Heating cap. (3) (*)	W	13.100	15.800	16.600	23.400	28.800	31.300	30.400	38.800	40.800
Air flow (4)	m³/h	1.100	1.200	1.150	2.100	2.300	2.800	2.200	3.100	2.950
Sound pressure (7)										
Min-Med-Max	dB(A)	37-44-49	38-45-50	38-45-50	45-50-52	46-51-53	41-48-51	46-51-53	42-49-52	42-49-52
				Heating co	il					
HCN					60	75	-	103	130	
Heating cap. (2)				W	6.610	6.970	-	11.600	12.200	W
Air flow (4)				m³/h	1.050	1.140	-	2.000	2.170	m³/h
HCN					-	136	170	-		
Heating cap. (2)				W	-	15.500	16.400	-	W	
Air flow (3)				m³/h	-	2.670	2.930	-	m³/h	

Capacities and air flow rates referred in terms of prevalence 0 Pa. For different static pressure, refer air flow variation diagrams. Note:

(1) Entering air temperature: 27°C d.b./19°C w.b.
In/Out water temperature: 7°C /12°C
(2) Entering air temperature: 20°C d.b.
In/Out water temperature: 70°C / 60°C

(3) Entering air temperature: 20°C d.b.

In/Out water temperature: 40°C / 45°C

(4) Nominal data measured with casing ref. AMCA210-74 standards and plenum + diaphragm ref. CNR-UNI10023 standards.
(7) Free field sound pressure, 3 m distance. Data calculated based on sound power measured in riverberation room ref. ISO 3741 - ISO 3742 standards.

(1)(2)(3)(4)(5)(6) Nominal technical data, refer air flow (4) to the max speed and unit with free air flow

DN: Nominal diameter; F=Female gas water coil connections

Version "S"

HCN		60	75	86	103	130	150	136	170	200
L	mm	800	800	800	1.200	1.200	1.200	1.600	1.600	1.600
А	mm	760	760	760	1.160	1.160	1.160	1.560	1.560	1.560
В	mm	210	210	210	210	210	210	210	210	210
Peso	kg	34	35	37	48	50	53	63	65	68

Version "S" - Hot water exchanger

HCN		60	75	103	130	136	170
L	mm	800	800	1.200	1.200	1.600	1.600
А	mm	760	760	1.160	1.160	1.560	1.560
В	mm	210	210	210	210	210	210
Peso	kg	36	37	51	53	67	69

Ver	Version "D"										
HC	CN		60	75	86	103	130	150	136	170	200
L	1	mm	840	840	840	1.240	1.240	1.240	1.640	1.640	1.640
A	1	mm	800	800	800	1.200	1.200	1.200	1.600	1.600	1.600
В	1	mm	250	250	250	250	250	250	250	250	250
Pe	SO	kg	48	49	51	66	68	71	85	87	90

Version "D" - Hot water exchanger

			-					
HCN		60	75	103	130	136	170	
L1	mm	840	840	1.240	1.240	1.640	1.640	
A1	mm	800	800	1.200	1.200	1.600	1.600	
B1	mm	250	250	250	250	250	250	
Peso	kg	50	51	69	71	89	91	

	BC	Auxiliary hea	ating coil, 2 raws		RE	Electrical heater integrated inside the units + "TS" safety thermostat (without power relay) 230V/50Hz/1Ph
	MOR TMB	Mammoth t + water low thermostat. units are sup Mammoth t without the	ype terminal boar temperature Tset 32°C. All HC oplied with standa ype terminal boar rmostat.	rd CN Ird rd,	TEL	Remote control management system .Motherboard + Air sensor + Water sensor - I.R. reciever + I.R. Remote control (control 2-4 pipe units, with/without valves). Fan 7A-230Vac. Valves: 2A-230Vac.
~	SND W4	Water temp NTC 4700 (minimum te Cable lengt to TMB the	erature probe (ty Dhm @ 25°C) with mperature settab h 1 meter. Alterna rmostat.	pe ole. tive	SFA-S SFA-D	Flat air filter (not ductable), EU3 filtering level. (S=single skin panel made of galvanized steel, D=double skin panel pre-painted)
	MB	Brushless m variation 0- flow (signal wall thermo accessory fr unit with Bru not be combi TEL	notor with continu 100% of the air 010 Vdc) Digital stat is an essentia or the operation o ushless motor. Sho ned with accessory	os I of a buld	SFC-S SFC-D	Ductable air filter section + flat ait filter, EU3 filtering level (S=single skin panel made of galvanized steel, D=double skin panel pre- painted)
A.	3V-2,5 3V-4 3V-6	3-way valve for 2 pipes u	with actuator 230 units	ov ov	3VM-2,5 3VM-4 3VM-6	3-way valve with actuator 24Vac for 2 pipes units, Modulating signal O-10V
and the second second	2V-2,5 2V-4 2V-6	2-way valve for 2 pipes u	with actuator 230 units	ov 💦	2VM-2,5 2VM-4 2VM-6	2-way valve with actuator 24Vac for 2 pipes units, Modulating signal 0-10V
AF.	3VC-2,5 3VC-4 3VC-6	3-way valve pipe unit) w	for heating coil (ith actuator 230V	4-	3VCM-2,5 3VCM-4 3VCM-6	3-way valve for heating coil (4- pipe unit) with actuator 24Vac, Modulating signal 0-10V
		Quadro elet (BOX+magr	trico per sezione netotermico+relè	elettrica 230Vac)		
100		Modello	Potenza	Compatibilità HCN	Compatibilit	à QR1
	QR1	RE0.7-24	0,7 kW / 3,1 A	Tutte le taglie	QR1-0,7	
CAN -		RE1.0-24	1,0 KW / 4,4 A	lutte le taglie	QR1-1,4	ł

 RE1.0-24
 1,0 kW / 4,4 A
 Tutte le taglie

 RE1.5-24
 1,5 kW / 6,6 A
 Tutte le taglie

 RE2.0-24
 2,0 kW / 8,7 A
 Tutte le taglie

 RE3.0-24
 3,0 kW / 13,1 A
 HCN 103-130-150-136-170-200

QR1-2,3

QR1-2,3

QR1-3,7

Fitted accessories

Ductable air filter section + HIGH EFFICIENCY ondulated air filter H=100mm, EU5 filtering level (S=single skin panel made of galvanized steel, D=double skin panel pre-painted)

SFD-D

Air press. drop (clean/dirty filter)

SFD-S

SF SF SF

HCN	60	75	86	103	130	150	136	170	200
A (Pa)	15/35	17/42	16/38	23/55	27/66	25/60	22/54	28/66	25/60
C (Pa)	15/35	17/42	16/38	23/55	27/66	25/60	22/54	28/66	25/60
D (Pa)	20/37	24/44	22/41	32/59	38/70	35/64	31/58	39/71	35/64

Power electric board for heaters 230Vac (BOX+magnetothermic+relè)

Model	Power	HCN Compatibility	QR1 Compatibility
RE0.7-24	0,7 kW / 3,1 A	All size	QR1-0,7
RE1.0-24	1,0 kW / 4,4 A	All size	QR1-1,4
RE1.5-24	1,5 kW / 6,6 A	All size	QR1-2,3
RE2.0-24	2,0 kW / 8,7 A	All size	QR1-2,3
RE3.0-24	3,0 kW / 13,1 A	HCN 103-130-150-136-170-200	QR1-3,7

2VC-2,5 2-way valve for heating coil **2VC-4** (4-pipe unit) with actuator 2VC-6 230V

2VCM-2,5 2VCM-4 2VCM-6

2-way valve for heating coil (4pipe unit) with actuator 24Vac, Modulating signal 0-10V

Note: Every single kit includes one valve and one actuator. In case of 4-pipe system must be provided n° 2 valves. For example, with ducted 4-pipe, in the case of 3-way valves, power supply 230 V: 3V + 3VC

3/2 way valve characteristics - RECOMMENDED MATCHINGS

HCN	60	75	86	103	130	150	136	170	200
Valve characteristics		Kvs 2,5			Kvs 4			Kvs 6	
User side connection					DN 3/4" N	Л			
Nominal pressure					PN 16 ba	r			

Loose accessories

01	CRA ⁽¹⁾	230V wall therm fan selector + O 2 pipes plant ma or without 230V	nostat. 3 speeds ff/On selector + nagement with ′ on-off valves	I A A A A A A A A A A A A A A A A A A A	8	MS	Motor " for air d	230Vac amper	on-off" si	uitable
	PMP	Condensate pur with 8A (250V)	np provided	and a	16- 19-	CBP ⁽¹⁾	Digital v 230V/2 fan, 2 o manage off valv 24V alir	vall therr 4V. On-c r 4 pipes ement wi e or 010 nentatio	nostat off or brus plant th or with IV with 23 n.	shless out on- 30V or
	AIRMUST 3V	Wall-mounted t function contro fancoil with Wi- with or without	chermostat I for 3-speed Fi and Modbus, valves			AIRMUST 010	Wall-m functic motor and Mo valves	ounted t on contro 0-10V fa odbus, w	hermosta I for Brus ncoil, with ith or with	at hless n Wi-Fi nout
·	SDI.4X3A	Card with 4 by 3 (suitable to cont No. 4 3-Speed 3 No. 4 small fan- Contatti-Contac 230Vac	A output trol up to max 3A motors ; ex. coils) cts: 4x 3(0,3)A		anna -	SDI.2X10A	Card wi (suitabl No. 2 3- ex. No. Contatt 230Vac	th 2 by 10 e to cont -Speed r 1 large ur ti-Contao	DA output trol up to notors of hit with 2 r cts: 2x 10/	t max 10A ; notors) \-
	S2S-S S2S-D	Closed section adjustment louv below + 1 louver side) - Louvers - can be either n motorized contr skin panel made steel, D=double painted)	+ 2 Regulation/ ers (1 louver on the rear without controls nanual or ol (S=single of galvanized skin panel pre-			SSL-S SSL-D	Labyrin section intake/s skin par steel, D painted	t noise le , suitable supply ou nel made =double)	evel atten for both itlets (S=: of galvar skin pane	uator air single nized el pre-
Area a	Scm-S Scm-D	Steel section wit (S=single skin pa N° and Ø spigot HCN SCMn° x Ø	th spigots "Ø" wir anel made of gal 55 60 75 3xØ200/180	th variable c vanized stee 86)/160	diamete el, D=do 103 5	r made of p puble skin pa 130 ixø200/180/160	lastic ma anel pre- 150	nterial, ex painted) 136 6x(ternal ins) 170 0200/180/16	ulation 200
4	SSM-S SSM-D	External/Internal louvers with mar D=double skin p Air pressure dro HCN SSM (Pa) S2S (Pa)	al mixing section nual controls - ca banel pre-painted p 60 75 13 15 15 17	"externail ai an be motor d) 86 14 16	r O-33% ized) (S 103 20 23	6 - internal a S=single skin 130 24 27	150 22 25	7% or vic ade of g 136 20 22	e versa (c alvanized 170 24 28	200 22 25
	SBC-O	Auxiliary drain pa galvanized steel insulation	an made of - thermal							

(1) Each control panel can control only one unit. To controll more units see SDI accessory

HCNA

Medium ductable terminal units with Brushless DC and AC Asynchronous motor

7 kW÷68 kW

The HCNA are small air handling units, which can be freely configured. It is possible to select between 2 motors (6 Poles or Brushless), 2 types of housing cases (S or D), the version of 2/4 pipes and a wide range of coupled accessories.

The wide flexibility combined with the full range of capacity rating is the HCNA winning idea that allows to find the best solution for suiting your needs.

Technical Features

- It has a self-supporting structure made of thick galvanized sheet making it resistant to rust, corrosion, chemical agents, solvents, aliphatic and alcohols.
- Self-supporting panels and removable; assembling with selftapping screws for quick and easy inspection/maintenance. They are available in housing cases "S"-version (Simple panel) and "D"-version (Sandwich double panels 20mm thick with outer painted sheet with white RAL 9002).
- The units provide heat exchange coils (without air vent valves) with high-efficiency made of copper tubes and aluminium fins.
- Standard connections located on the right; on request for left connections at additional charges.
- The sections with cooling coil are equipped with a drain pan in galvanized sheet + external thermal insulation (optional, with additional charges, made of stainless steel AISI 304) with a single slope in order to ensure the optimal condensate draining, with drain hole of Ø30mm.
- The standard electrical equipment includes: "Mammoth" type terminal board IP20 installed outside the unit on the same side of the water connections. For units with 2 motors, it is recommended the installation of 3 relays or the interface card.
- All the standard versions are supplied with free air inlet and air outlet openings, without any grill/protection and without air filter.
- N° 2 motor types:6 Poles or Brushless

Versions

S

Concealed version - Single panel

D

With cabinet version - Double panel

HCNA		71	117	143	165	216 ⁽⁷⁾	290 ⁽⁷⁾	240 ⁽⁷⁾	293 (7)	330(7)	565 ⁽⁷⁾	685 ⁽⁷⁾
Cooling cap. (1)	kW	7,3	11,7	14,6	17,0	22,2	29,8	24,1	30,1	34,0	58,1	70,1
Sensible capacity (1)	kW	5,9	9,8	12,0	14,0	18,3	24,3	20,2	24,6	28,1	44,5	55,4
Heating cap. (2)	kW	17,2	28,3	34,9	40,7	52,9	69,9	58,8	71,2	80,9	125,7	157,2
Heating cap (3)	W	8.350	14.100	17.000	19.700	25.650	34.100	29.300	34.600	39.150	60.950	76.650
Air flow (3)	m³/h	1500	2500	3000	3500	5000	6000	5000	6000	7000	10000	12000
Water flow (4)												
Cooling	l/h	1256	2012	2511	2924	3818	5126	4145	5177	5848	9993	12057
Heating	l/h	1479	2434	3001	3500	4549	6011	5057	6123	6957	10810	13519
Pressure drop water (4)												
Cooling	kPa	27,7	27,3	29,7	27,5	28,1	32,8	25,7	27,4	29,0	32,4	35,0
Heating	kPa	30,0	31,1	33,1	30,7	31,0	35,2	30,1	30,0	32,0	29,6	34,3
Sound pressure (5)												
Min-Med-Max	dB(A)	35-41-46	42-48-54	40-45-54	43-47-53	48-52-58	47-51-57	45-51-57	43-48-57	46-50-56	51-55-61	50-54-60
Motors/Fans	n°/n°	1/1	1/1	1/1	1/1	1/1	1/1	2/2	2/2	2/2	2/2	2/2
Absorbed current	А	1x2,4	1x5,0	1x5,0	1x7,0	1x7,2	1x9	2x5	2x5	2x7	2x7,2	2x9
Power supply						230Vac -	1 Ph - 50Hz					
Poles							4					
Coil/Rows	n°	3R	3R	3R	3R	3R	3R	3R	3R	3R	4R	4R
Water connections	Ø	3/4"M	1"M	1"M	1"M	1"1/4M	1"1/4M	1"1/4M	1"1/4M	1"1/4M	1"1/4M	1"1/4M
Drain pipe	Ø (mm)	30	30	30	30	30	30	30	30	30	30	30
					Heating	coil						
HCNA		71	117	143	165	216 ⁽⁷⁾	290 ⁽⁷⁾	240 ⁽⁷⁾	293 ⁽⁷⁾	330 ⁽⁷⁾	565 ⁽⁷⁾	685 ⁽⁷⁾
Heating cap. (2)	W	13,3	21,7	27,3	31,7	40,4	54,5	44,8	55,3	62,4	85,2	103,1
Water flow (5)												
Heating	l/h	1144	1866	2348	2726	3474	4687	3853	4756	5366	7327	8867
Pressure drop water (5)												
Heating	kPa	35,1	36,3	37,7	38,6	40,4	37,3	37,7	34,7	37,1	37	40,2
Coil/Rows	n°	2R	2R	2R	2R	2R	2R	2R	2R	2R	2R	2R
Water connections	Ø	3/4"M	1"M	1"M	1"M	1"1/4M	1"1/4M	1"1/4M	1"1/4M	1"1/4M	1"1/4M	1"1/4M

Entering air temp.: 27°C d.b./19°C w.b. - In/Out water temp.: 7°C /12°C Max speed (1)

(2) (3) Entering air temp:: 20°C d.b. - In/Out water temperature: 70°C / 60°C Max speed Entering air temp:: 20°C d.b. In/Out water temperature: 45°C / 40°C Max speed

Nominal data measured with casing ref. AMCA210-74 standards and plenum + diaphragm

(4)

ref. CNR-UNI10023 standards. (6) Free field sound pressure, 3 m distance. Data calculated based on sound power measured in riverberation room ref. ISO 3741 - ISO 3742 standards. (7) With CRBM-CBP-CRA accessories. For units equipped with a motor with electrical absorption greater than 3A, or with 2

motors, add 1 SDI.2x10A interface card.

(1)(2)(3)(4)(5) Nominal technical data , refer air flow (3) to the max speed and unit with free air flow

(*) DN: Nominal diameter; F=Female gas water coil connections

Concealed version - Single panel

Version "S"

HCN	A	71	117	143	165	216	290	240	293	330	565	685
A1	mm	360	425	425	480	550	550	425	425	480	580	580
B1	mm	560	660	760	760	1.160	1.360	1.160	1.360	1.360	1.660	1.660
C1	mm	840	995	1.105	1.160	1.140	1.240	995	1.105	1.160	1.450	1.450
Weight	kg	35,8	46,6	55,7	60,6	93,7	107,8	78,5	94,8	103,5	179,1	181,1

Version "S" - con batteria calda / hot water exchanger

	HCN	A	71	117	143	165	216	290	240	293	330	565	685
	A1	mm	360	425	425	480	550	550	425	425	480	580	580
	B1	mm	560	660	760	760	1.160	1.360	1.160	1.360	1.360	1.660	1.660
	C1	mm	840	995	1.105	1.160	1.140	1.240	995	1.105	1.160	1.450	1.450
١	Neight	kg	40,2	52,1	62,3	67,2	104,7	123,8	89,5	110,8	119,5	203,1	205,1

With cabinet version - Double panel

Version "D"

HCN	A	71	117	143	165	216	290	240	293	330	565	685
А	mm	380	440	440	480	570	570	440	440	480	600	600
В	mm	520	620	720	720	1.120	1.320	1.120	1.320	1.320	1.620	1.620
С	mm	870	1.020	1.120	1.160	1.150	1.250	1.020	1.120	1.160	1.470	1.470
Weight	kg	45,1	59,5	71,3	77,3	118,9	138,7	99,7	121,4	131,4	224,4	226,4

Version "D" - con batteria calda / hot water exchanger

HCN	A	71	117	143	165	216	290	240	293	330	565	685
Α	mm	380	440	440	480	570	570	440	440	480	600	600
В	mm	520	620	720	720	1.120	1.320	1.120	1.320	1.320	1.620	1.620
С	mm	870	1.020	1.120	1.160	1.150	1.250	1.020	1.120	1.160	1.470	1.470
Weight	kg	49,5	65,0	77,9	83,9	129,9	154,7	110,7	137,4	197,4	248,4	250,4

*WARNING: verify if the electrical absorption of the units motors are compatible with the remote control contact rating. If the electrical absorption is higher, or the unit is provided with 2 motors, it's recommended to use SDI chart.

All HCNA units are supplied with standard Mammoth type terminal board, without thermostat.
 Each control panel can control only one unit (see accessory "SDI").

Fitted accessories

	BC	Auxiliary heating coil, 2 raws		PFA-S PFA-D	Ductable air filter section + flat air filter, EU3 filtering level (S=single skin panel made of galvanized steel, D=double skin panel pre-painted)
	TEL	Remote control management system. Motherboard + Air sensor + Water sensor - I.R. reciever + I.R. Remote control (control 2-4 pipe units, with/ without valves). Fan 7A-230Vac. Valves: 2A-230Vac.		PFO-S PFO-D	Ductable air filter section + HIGH EFFICIENCY undulated air filter H=100mm, EU5 filtering level (S=single skin panel made of galvanized steel, D=double skin panel pre-painted)
	3V-2,8 3V-5,2 3V-13 3V-16	3-way valve with actuator 230V	:	2V-2,8 2V-5,2 2V-13 2V-16	2-way valve with actuator 230V
	3VM-2,8 3VM-5,2 3VM-13 3VM-16	3-way valve with actuator 24Vac, modulating signal 0-10V	:	2VM-2,8 2VM-5,2 2VM-13 2VM-16	2-way valve with actuator 24Vac, modulating signal 0-10V
	MB	Brushless motor with continuos van thermostat is an essential accesson combined with accessory TEL	riation 0-100% of t ry for the operatio	the air flow (: n of a unit w	signal 010 Vdc) Digital wall ith Brushless motor. Should not be
Loose access	ories				
01	CRA ⁽¹⁾	230V wall thermostat. 3 speeds fan selector + Off/On selector + 2 pipes plant management with or without 230V on-off valves	115	CBP ⁽¹⁾	Digital wall thermostat 230V/24V. On-off or brushless fan, 2 or 4 pipes plant management with or without on- off valve or 010V with 230V or 24V alimentation.
	AIRMUS 3V	Wall-mounted thermostat function control for 3-speed fancoil with Wi-Fi and Modbus, with or without valves		AIRMUST 010	Wall-mounted thermostat function control for Brushless motor 0-10V fancoil, with Wi-Fi and Modbus, with or without valves

(1) Each control panel can control only one unit. To controll more units see SDI accessory

Loose accessories

	MOR- TMB	Mammoth type terminal board + water low temperature thermostat. Tset 32°C. All HCN units are supplied with standard Mammoth type terminal board, without thermostat.	SND-W4	Water temperature probe (type NTC 4700 Ohm @ 25°C) with minimum temperature settable. Cable length 1 meter. Alternative to TMB thermostat.
S	DI.4X3A	Card with 4 by 3A output (suitable to control up to max No. 4 3-Speed 3A motors ; ex. No. 4 small fan-coils) Contatti-Contacts: 4x 3(0,3)A 230Vac	SDI.2X10A	Card with 2 by 10A output (suitable to control up to max No. 2 3-Speed motors of 10A ; ex. No. 1 large unit with 2 motors) Contatti-Contacts: 2x IOA- 230Vac
	PFT-S PFT-D	Ductable air filter section+VERY HIGH EFFICIENCY POCKET BAGS air filter h=400mm with EU7 filtering level (S=single skin panel made of galvanized steel, D=double skin panel pre-painted)	P2S-S P2S-D	Closed section +2 regulation/ adjustment louvers (1 louver below + 1 louver on the rear side). Louvers without controls, can be either manual or motorized control. (S=single skin panel made of galvanized steel, D=double skin panel pre- painted)
4	PMA-S PMA-D	External/internal mixing section "external air 0-33% - internal air 100-67%" (S=single skin panel made of galvanized steel, D=double skin panel pre-painted)	MS MS	Motor "230Vac on-off" suitable for air damper
	P90-S P90-D	90° sectiom (S=single skin panel made of galvanized steel, D=double skin panel pre-painted)	PCR-S PCR-D	Steel section with spigots "Ø", internal insulation. (S=single skin panel made of galvanized steel, D=double skin panel pre-painted)
	PSL-S PSL-D	Labyrinth noise level attenuator section, suitable for both air intake/supply outlets (S=single skin panel made of galvanized steel, D=double skin panel pre- painted)	рмр	Condensate pump including 0,5 litres condensate tank, provided with 4A (250V)

COIL characteristics

	HCNA	71	117	143	165	216	290	240	293	330	565	685
Heat/cool	Kvs characteristic	2,33	3,78	4,58	5,65	6,65	9,00	8,22	9,91	11,04	16,36	19,73
coil	User side connection DN	3/4"M	1"M	1"M	1"M	1"-1/4M	1"-1/2M	1"-1/4M	1"-1/2M	1"-1/2M	1"-1/2M (4R)	1"-1/2M (4R)
Heat anil	Kvs characteristics	1,66	2,56	3,23	3,94	4,64	6,46	5,73	7,14	7,98	9,67	11,53
neal com	User side connection DN	3/4"M	1"M	1"M	1"M	1"-1/4M	1"-1/4M	1"-1/4M	1"-1/4M	1"-1/4M	1"-1/4M	1"-1/4M

Valve characteristics

3-way valve		(1) Every single kit ir	ncludes 1 intercept valve o	only
3V / 3VM	DN 3/4" Kvs 2,8	DN 1" Kvs 5,2	DN 1 1/4" Kvs 13,0	DN 1 1/2" Kvs 16,0
2-way valve		(1) Every single kit ir	ncludes 1 intercept valve o	only
2V / 2VM	DN 3/4" Kvs 2,8	DN 1" Kvs 5,2	DN 1 1/4" Kvs 13,0	DN 1 1/2" Kvs 16,0

(1) Each valve kit is suitable for any HCNA unit size. with on-off valve it is recommended to use valves with high Kvs - with modulating valves it is recommended to use valves with Kvs - comparable with the one of the coil

The heat coil of HCNA units (4-pipes system) require the same type valves. So the 4-pipes system need n°2 valves (n° 2 codes)

OTA1 micro E 25÷130

Energy recovery ventilation unit

250 m³/h÷1300 m³/h

Technical features

- Galvanized steel self-supporting panels, internally and externally insulated; accessibility from side door.
- ISO 16890 ePM2.5 95% efficiency class filter with synthetic cleanable media and COARSE 50% pre-filter on fresh air, COARSE 50% filter on return air intake.
- Integrated pressure switch for dirty filter signal.
- Motorised heat recovery by-pass device, automatically controlled by unit control to use fresh air free-cooling when convenient.
- Low consumption high efficiency & low noise direct driven fans with 10-speed EC motors.
- Duct connections by circular plastic collars.

Built-in electric box equipped with PCB to control fan and bypass function.

With wi-fi accessory is possible the remote control the unit by app and mobile phone.

Accessories

PTSTouch screen controllerQSWCO2 wall mount sensorUSWHumidity wall mount sensorSLCDuct circular sound attenuator	BIOX SBE1 SBE2 WFM	Purifying system BIOXIGEN® Electric pre-heater module Electric post-heater module WiFi module for remote control via app
--	-----------------------------	---

Mod.		25	35	5 50 65		80	100	130
Α	mm	815	815	895	1185	1185	1200	1200
В	mm	270	270	270	390	390	390	390
С	mm	650	855	955	945	1200	1290	1290
Weight	kg	30	37	43	65	71	83	83
J ·	5							

OTA1 micro E		25	35	50	65	80	100	130	
Air flow	m³/h	250	350	500	650	800	1000	1300	
Nominal external static pressure	Pa	90	140	110	100	140	140	135	
Power supply	V/ph/Hz				230 / 1 / 5	0			
Absorbed current	A	0,5	0,6	0,6	1,2	1,4	2,1	2,7	
Fans									
Motor typology					EC				
Number of speeds		10							
Fan control (1)	W				Man / VSI)			
Power input	W	80	130	150	230	320	390	490	
Sound pressure (2)	dB(A)	34	37	39	40	42	43	44	
Heat exchanger									
Winter efficiency (3)	%	73	74	76	74	76	76	74,2	
Winter enthalpy effic. (3)	%	65	65	67	65	65	62	59	
Summer thermal effic. (4)	%	73	74	76	74	76	76	74	
Summer enthalpy effic. (4)	%	62	62	63	60	63	60	58	
Dry thermal efficiency (5)	%	73	74	76	74	76	76	74	
(1) Man = Manual by selector switch or control panel: VSD = Modulation by air	quality or air (3) Outside	air at -5° 8	R0% RH [.] roo	m air at 20°0	50% RH				

elector switch or lation by air quality or all humidity sensor

(2) Sound pressure level calculated at 1m far from the service side of the casing, at nominal conditions

(4) Outside air at 32° 50% RH; room air at 26° C 50% RH

(5) Refeer to EU 1253/2014 regulation: at nominal pressure; air conditions refer to EN 308 standard

OTA1 40÷500

Heat recovery unit with aluminium counterflow exchanger

400 m³/h÷4700 m³/h

- Constant air flow fans available on OTA1 100 500.
- Built in by-pass facility.
- Case made by sandwich panels 23 mm thickness, galvanized inner skin and prepainted outer skin; 45 kg/m3 density foamed polyurethane as heat and sound insulation.
- Full-range controlled direct driven double inlet centrifugal fans; low consumption EC technology motors on OTAE1.
- Filtering sections composed by cell filters with polypropylene media, extractable from side removable panels, ISO 16890 ePM1 55% efficiency for the fresh air flow, and ePM10 55% efficiency for the exhaust air flow.
- Integrated pressure switch for dirty filter signal.
- Condensate drain pan made of galvanized steel plate with water drain connection downwards, that ensure a total drainage.
- With PCUS cntrol is possible the remote control by App for mobile fone in wi-fi network.

Accessories

ATG BCR BER BIOX CPA DSF7/DSF9 EXT F7CF	Anti-freeze thermostat Post-heating internal water coil Internal electric post-heating coil Purifying system Bioxigen® Kit weather hood for external installation High efficiency post-filtration Kit for external installation High efficiency filters on exhaust air	SIGB SM/SMR230 3SM/SMR230 SPC SR SSC TUP	Integrated management system on board Damper actuators Actuators for RMS N. 4 connections for circular ducts kit Regulation damper Duct silencers Wall mounted remote control panel (only
KB PCUS PCUSM PF QSC/QSA RMS SBFR SCMB	Kit bypass management Unit control panel Unit control panel with modbus Additional pressure switch CO2 sensor 3 dampers defrosting section Water cooling or heating coil section Modbus PCB for SIGB / Q	USD/USW V2O V3O V3M VSD	with SIGB) Humidity sensor Kit 2-Way valve with on-off actuator Kit 3-Way valve with on-off actuator Kit 3-Way valve with modulating actuator Constant air flow fans control

Versions OTA1 Horizontal units with AC fans

OTAE1 Horizontal units with EC fans

Mc	od.	40	75	100	150	200	320	400	500
А	mm	1480	1940	1940	2200	2200	2500	2500	2500
В	mm	380	480	480	550	550	680	680	680
С	mm	800	990	990	1000	1400	1400	1400	1700
Weight	kg	90	140	140	170	200	230	260	300

0741					40	75	100	150	200	220
Air flow			m³/h		400	750	1000	1500	200	320
External static pressure			Pa		160	120	180	160	120	180
Maximum external static pressure			Pa		160	120	180	160	120	180
Power supply	V/nh/H		100 120		100	100	120	100		
Maximum input current			Λ	12	15	20	6.0	60	6.0	1/
	A		1,0	2,9	0,0	0,0	0,0	14		
rails						10				
			_			AU				
(1) Speed	n°		3	3	3	3	3	3		
(2) Sound pressure	dB (A))	50	53	53	56	56	60		
Heat exchanger										
(3) Winter efficiency			%	8	33,6	82,9	81,6	83,3	83,7	86,8
(4) Summer efficiency			%		75,5	75,9	74,5	75,1	75,6	78
(5) Dry efficiency			%	7	75,9	76,4	75,0	75,6	76,0	76,3
ΟΤΔΕ1		40	75	100		150	200	320	400	500
Air flow	m³/h	400	750	1000		1500	2050	3200	3800	4700
External static pressure	Pa	160	120	180		160	120	180	200	200
Maximum external static pressure	Pa	340	160	520		500	540	375	330	200
Power supply	V/ph/Hz					230/	1/50			
Maximum input current	А	2,4	2,4	9,0		9,0	9,0	10,0	8,8	8,8
Fans										
Motor Type						E	С			
(1) Speed	n°					Mul	tiple			
(2) Sound pressure	dB (A)	49	52	51		53	51	56	58	60
Heat exchanger										
(3) Winter efficiency	%	83,6	82,9	81,6		83,3	83,7	86,8	84,1	84
(4) Summer efficiency	%	75,5	75,9	74,5		75,1	75,6	78,0	75,0	75,1
(5) Dry efficiency	%	75,9	76,4	75,0		75,6	76,0	76,3	75,5	75,6

(1) Multiple = Multispeed > 3 Man = Manual by selector switch or control panel; 0-10V = By potentiometer or control panel; VSD = Constant flow control or modulation by air quality or air humidity sensor (2) Sound pressure level calculated at 1 m far from the service side of the casing, with ducted supply, exhaust, return and fresh air vents, at nominal conditions

(3) Outside air at -5° 80% RH; room air at 20°C 50% RH
(4) Outside air at 32° 50% RH; room air at 26°C 50% RH
(5) Refeer to EU 1253/2014 regulation: at nominal pressure; air conditions refer to EN 308 standard

OTA1-P 40÷320

Energy recovery ventilation units

400 m³/h÷3100 m³/h

- Constant air flow fans available on OTA1-PE 100-320.
- Ceiling horizontal installation, the heat exchanger is extractable from below for all models.
- Case made by sandwich panels 23 mm thickness, galvanized inner skin and prepainted outer skin; 45 kg/m3 density foamed polyurethane as heat and sound insulation.
- Full-range controlled direct driven double inlet centrifugal fans;
- OTA1-PE version with low consumption EC technology motors available.
- Filtering sections composed by cell filters with polypropylene media, extractable from side removable panels, ISO 16890 ePM1 55% efficiency for the fresh air flow, and ePM10 55% efficiency for the exhaust air flow.
- Integrated pressure switch for dirty filter signal.
- WIth PCUS control is possible to activate remote controll by App in wi-fi network.

Accessories

ATG BCR	Anti-freeze thermostat Post-heating internal water coil	SIGB	Integrated management system on board
BER	Internal electric post-heating coil	SM/SMR230	Damper actuators
BIOX	Purifying system Bioxigen®	3SM/SMR230	Actuators for RMS
CPA	Kit weather hood for external installation	SPC	N. 4 connections for circular ducts kit
DSF7/DSF9	High efficiency post-filtration	SR	Regulation damper
EXT	Kit for external installation	SSC	Duct silencers
F7CF	High efficiency filters on exhaust air	TUP	Wall mounted remote control panel (only
KB	Kit bypass management		with SIGB)
PCUS	Unit control panel	USD/USW	Humidity sensor
PCUSM	Unit control panel with modbus	V2O	Kit 2-Way valve with on-off actuator
PF	Additional pressure switch	V30	Kit 3-Way valve with on-off actuator
QSC/QSA	CO2 sensor	V3M	Kit 3-Way valve with modulating actuator
RMS	3 dampers defrosting section	VSD	Constant air flow fans control
SBFR	Water cooling or heating coil section		
SCMB	Modbus PCB for SIGB / Q		

Versions OTA1-P

Horizontal units with AC fans

OTA1-PE

Horizontal units with EC fans

Мс	od.	40	75	100	150	200	320
Α	mm	1480	1450	1600	2000	2000	2100
В	mm	380	480	550	680	680	680
С	mm	800	990	1000	1290	1290	1400
Weight	kg	80	120	150	190	200	220

0741 D		40	75	100	150	200	200
UIAI-P	m3/h	40	/ 5	1000	150	200	320 2100
All 110W		170	120	160	100	2300	100
	Pa	170	120	160	190	240	190
		170	120	100	190	240	190
	v/pn/HZ	1 50	0.00	230,	(1/50	14.00	14.00
	A	1,50	2,90	6,00	6,00	14,00	14,00
Fans					0		
		4	0	P	40	0	0
		4	3	3	3	3	3
Absorbed Fan Power	KW	0,16	0,28	0,55	0,96	1,55	1,67
(2) Sound pressure	dB (A)	50	50	53	56	60	61
Heat exchanger		75.00	70 70	74.00	70.00	70.00	74.40
(3) Winter thermal effic.	%	/5,00	/3,/0	/4,00	/3,00	/3,02	/1,40
(4) Winter enthalpy effic.	%	60,00	58,20	58,80	62,50	62,70	55,50
(5) Summer thermal effic.	%	64,10	59,70	60,20	60,10	60,20	57,04
(4) Summer enthalpy effic.	%	56,70	55,10	55,70	58,30	58,50	52,50
(5) Dry thermal efficiency	%	75,10	73,70	74,20	73,10	73,20	73,00
OTA1-PE		40	75	100	150	200	320
OTA1-PE Air flow	m³/h	40 400	75 660	100 1000	150 1500	200 2300	320 3100
OTA1-PE Air flow Nominal external static pressure	m³/h Pa	40 400 170	75 660 120	100 1000 160	150 1500 190	200 2300 240	320 3100 190
OTA1-PE Air flow Nominal external static pressure Maximum external static pressure	m³/h Pa Pa	40 400 170 375	75 660 120 250	100 1000 160 535	150 1500 190 550	200 2300 240 447	320 3100 190 400
OTA1-PE Air flow Nominal external static pressure Maximum external static pressure Electrical power supply	m³/h Pa Pa V/ph/Hz	40 400 170 375	75 660 120 250	100 1000 160 535 230,	150 1500 190 550 /1/50	200 2300 240 447	320 3100 190 400
OTA1-PE Air flow Nominal external static pressure Maximum external static pressure Electrical power supply Total full load amperage	m ³ /h Pa Pa V/ph/Hz A	40 400 170 375 2,40	75 660 120 250 2,40	100 1000 160 535 230, 9,00	150 1500 190 550 /1/50 9,00	200 2300 240 447 9,00	320 3100 190 400 10,00
OTA1-PE Air flow Nominal external static pressure Maximum external static pressure Electrical power supply Total full load amperage Fans	m³/h Pa Pa V/ph/Hz A	40 400 170 375 2,40	75 660 120 250 2,40	100 1000 160 535 230, 9,00	150 1500 550 (1/50 9,00	200 2300 240 447 9,00	320 3100 190 400
OTA1-PE Air flow Nominal external static pressure Maximum external static pressure Electrical power supply Total full load amperage Fans Motor type	m³/h Pa Pa V/ph/Hz A	40 400 170 375 2,40	75 660 120 250 2,40	100 1000 160 535 230, 9,00	150 1500 190 550 /1/50 9,00	200 2300 240 447 9,00	320 3100 190 400 10,00
OTA1-PE Air flow Nominal external static pressure Maximum external static pressure Electrical power supply Total full load amperage Fans Motor type (1) Speeds	m ³ /h Pa Pa V/ph/Hz A n°	40 400 170 375 2,40	75 660 120 250 2,40	100 1000 160 535 230, 9,00 E Mul	150 1500 190 550 /1/50 9,00 EC	200 2300 240 447 9,00	320 3100 190 400 10,00
OTA1-PE Air flow Nominal external static pressure Maximum external static pressure Electrical power supply Total full load amperage Fans Motor type (1) Speeds Absorbed Fan Power	m ³ /h Pa Pa V/ph/Hz A n° kW	40 400 170 375 2,40	75 660 120 250 2,40	100 1000 160 535 230, 9,00 E Mul 0,48	150 1500 190 550 (1/50 9,00 EC Itiple 0,62	200 2300 240 447 9,00	320 3100 190 400 10,00
OTA1-PE Air flow Nominal external static pressure Maximum external static pressure Electrical power supply Total full load amperage Fans Motor type (1) Speeds Absorbed Fan Power (2) Sound pressure	m ³ /h Pa Pa V/ph/Hz A n° kW dB (A)	40 400 170 375 2,40 0,15 49	75 660 120 250 2,40 0,26 49	100 1000 160 535 230, 9,00 E Mul 0,48 52	150 1500 190 550 /1/50 9,00 EC Itiple 0,62 53	200 2300 240 447 9,00 1,31 59	320 3100 190 400 10,00 1,50 58
OTA1-PE Air flow Nominal external static pressure Maximum external static pressure Electrical power supply Total full load amperage Fans Motor type (1) Speeds Absorbed Fan Power (2) Sound pressure Heat exchanger	m ³ /h Pa Pa V/ph/Hz A n° kW dB (A)	40 400 170 375 2,40 0,15 49	75 660 120 250 2,40 0,26 49	100 1000 160 535 230, 9,00 E Mul 0,48 52	150 1500 190 550 /1/50 9,00 EC C Itiple 0,62 53	200 2300 240 447 9,00 1,31 59	320 3100 190 400 10,00 1,50 58
OTA1-PE Air flow Nominal external static pressure Maximum external static pressure Electrical power supply Total full load amperage Fans Motor type (1) Speeds Absorbed Fan Power (2) Sound pressure Heat exchanger (3) Winter thermal effic.	m³/h Pa Pa V/ph/Hz A n° kW dB (A) %	40 400 170 375 2,40 0,15 49 75,00	75 660 120 250 2,40 0,26 49 73,70	100 1000 160 535 230, 9,00 E Mul 0,48 52 74,00	150 1500 190 550 /1/50 9,00 EC Itiple 0,62 53 73,00	200 2300 240 447 9,00 1,31 59 73,20	320 3100 190 400 10,00 1,50 58 71,40
OTA1-PE Air flow Nominal external static pressure Maximum external static pressure Electrical power supply Total full load amperage Fans Motor type (1) Speeds Absorbed Fan Power (2) Sound pressure Heat exchanger (3) Winter thermal effic. (4) Winter enthalpy effic.	m³/h Pa Pa V/ph/Hz A n° kW dB (A) %	40 400 170 375 2,40 0,15 49 75,00 60,00	75 660 120 250 2,40 0,26 49 73,70 58,20	100 1000 160 535 230, 9,00 E Mul 0,48 52 74,00 58,80	150 1500 190 550 /1/50 9,00 EC Itiple 0,62 53 73,00 62,50	200 2300 240 447 9,00 1,31 59 73,20 62,70	320 3100 190 400 10,00 1,50 58 71,40 55,50
OTA1-PE Air flow Nominal external static pressure Maximum external static pressure Electrical power supply Total full load amperage Fans Motor type (1) Speeds Absorbed Fan Power (2) Sound pressure Heat exchanger (3) Winter thermal effic. (4) Winter enthalpy effic. (5) Summer thermal effic.	m³/h Pa Pa V/ph/Hz A n° kW dB (A) % % %	40 400 170 375 2,40 0,15 49 75,00 60,00 64,10	75 660 120 250 2,40 0,26 49 73,70 58,20 59,70	100 1000 160 535 230, 9,00 E Mui 0,48 52 74,00 58,80 60,20	150 1500 190 550 /1/50 9,00 EC Itiple 0,62 53 73,00 62,50 60,10	200 2300 240 447 9,00 1,31 59 73,20 62,70 60,20	320 3100 190 400 10,00 1,50 58 71,40 55,50 57,04
OTA1-PE Air flow Nominal external static pressure Maximum external static pressure Electrical power supply Total full load amperage Fans Motor type (1) Speeds Absorbed Fan Power (2) Sound pressure Heat exchanger (3) Winter thermal effic. (4) Winter enthalpy effic. (5) Summer thermal effic. (4) Summer enthalpy effic.	m³/h Pa Pa V/ph/Hz A n° kW dB (A) % % % %	40 400 170 375 2,40 0,15 49 75,00 60,00 64,10 56,70	75 660 120 250 2,40 0,26 49 73,70 58,20 59,70 55,10	100 1000 160 535 230, 9,00 E Mul 0,48 52 74,00 58,80 60,20 55,70	150 1500 190 550 (1/50 9,00 EC EC EC EC EC EC EC EC EC EC EC EC EC	200 2300 240 447 9,00 1,31 59 73,20 62,70 60,20 58,50	320 3100 190 400 10,00 1,50 58 71,40 55,50 57,04 52,50
OTA1-PE Air flow Nominal external static pressure Maximum external static pressure Electrical power supply Total full load amperage Fans Motor type (1) Speeds Absorbed Fan Power (2) Sound pressure Heat exchanger (3) Winter thermal effic. (4) Winter enthalpy effic. (5) Summer thermal effic. (4) Summer enthalpy effic. (5) Dry thermal efficiency	m³/h Pa Pa V/ph/Hz A n° kW dB (A) % % % % %	40 400 170 375 2,40 0,15 49 75,00 60,00 64,10 56,70 75,10	75 660 120 250 2,40 0,26 49 73,70 58,20 59,70 55,10 73,70	100 1000 160 535 230, 9,00 E Mul 0,48 52 74,00 58,80 60,20 55,70 74,20	150 1500 190 550 /1/50 9,00 EC Itiple 0,62 53 73,00 62,50 60,10 58,30 73,10	200 2300 240 447 9,00 1,31 59 73,20 62,70 60,20 58,50 73,20	320 3100 190 400 10,00 1,50 58 71,40 55,50 57,04 52,50 73,00

(1) Multiple = Multispeed > 3 Man = Manual by selector switch or control panel; 0-10V = By potentiometer or control panel; VSD = Constant flow control or modulation by air quality or air humidity sensor (2) Sound pressure level calculated at 1 m far from the service side of the casing, with ducted supply, exhaust, return and fresh air vents, at nominal conditions

(3) Outside air at -5° 80% RH; room air at 20°C 50% RH
(4) Outside air at 32° 50% RH; room air at 26°C 50% RH
(5) Refeer to EU 1253/2014 regulation: at nominal pressure; air conditions refer to EN 308 standard

M/LX/I 95

OTAE1-RHP 35÷450

Heat recovery units combined to heat pump system

350 m³/h÷4500 m³/h

- Global COP >8
- HP mode with very low external temperature without pre-heating

Technical Features

- Series of 7 models for ceiling installation, composed of:
- Frame made from extruded aluminium alloy bars, connected by 3- way reinforced nylon joints.
- Sandwich panels, 23 mm thickness, galvanized steel inner skin and precoated outer skin; 45 kg/m3 foamed polyurethane heat and sound insulation.
- Wide surface ISO 16890 COARSE 55% efficiency synthetic filters on both air intakes; as an option, ePM1 70%.
- Air-to-air crossflow aluminium heat recovery.
- Air-to-air heat pump system (R410A) composed of electric

driven on-off compressor, evaporating and condensing reversible copperaluminium finned coils, electronic expansion valve.

- Full-range controlled direct driven double inlet centrifugal fans.
- Low consumption EC technology motors and constant flow regulation mode for 100-450 models.
- Built-in electric box complete with electronics and control panel.
- Possible water or electric integration

Accessories

BER	Additional electric heater post air treatment	SPC1 SR230	Round air duct adaptor ON-OFF external dampers with
BIOX	Purifying system		actuators
CPA	Fresh air/exhaust air casing	SR230R	ON-OFF external dampers with
F7CF	High efficiency filters F7 class		actuators spring return
PCUSM	Unit control panel with modbus	SSC	Duct silencer
PF	Air filter pressure switch	TUP	Wall mounted remote control panel
RMS	3 dampers section for low air fresh	TTP	Weather canopy
	temperature up to -20°C, with	V2O	2-way water valve kit with on/off actuator
	modulating actuators	V30	3-way water valve kit with on/off actuator
SBFR SCMB	Additional water coil section Modbus serial card		

ARIA ESAUSTA / EXHAUST AIR

ARIA DI RINNOVO / FRESH AIR

OTAE1-RHP А mm В mm С mm Weight kg

Outside air / Return air / Supply air / Exhaust air

OTAE1-RHP		35	60	100	150	230	320	450
Air flow	m³/h	350	600	1000	1500	2300	3200	4500
Supply ext. pressure	Pa	270	285	295	290	365	265	270
Return ext. pressure	Pa	245	215	240	230	305	195	205
(1) Sound pressure	dB (A)	59	64	62	67	65	68	70
Power supply	V/ph/Hz		230/	1/50			400/3/50	
Absorbed current	А	5,3	9,0	13,2	20,2	10,0	15,4	16,8
(3) Heating capacities								
Static recovery efficiency	%	62	51	50	50	50	50	50
Heat pump capacity	W	1740	2960	5010	7690	11090	16300	17300
Total heating capacity	W	3580	5790	9410	14390	21190	30260	36010
(4) Unit COP	W/W	10,90	9,60	9,20	8,60	8,90	9,90	12,60
(5) Cooling capacities								
Static recovery efficiency	%	56	50	50	50	50	50	49
Total cooling capacity	W	1810	2860	4890	7270	10580	15310	16990
Total cooling capacity	W	2210	3450	5840	8720	12830	18390	21440
(4) Unit EER	W/W	4,2	3,9	4,2	3,9	3,9	4,1	5,0

(1) Livello di pressione sonora valutata a 1 m da: presa premente canalizzata / presa

aspirante / vano compressore.

(2) Riferite alla portata nominale
(3) Aria esterna -5°C 80% UR; aria ambiente 20°C 50% UR

(4) Esclusa la potenza assorbita per la ventilazione
 (5) Aria esterna 32°C 50% UR; aria ambiente 26°C 50% UR

МЛХЛ

Accessories and regulation systems compatibility

The table below shows the compatibility between the various optional accessories and the regulation and control systems.

		Control and regulation system Unit control system with wall mount display															
Versions and optional access	ories								PC	US							
ID. Configuration		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Version with standard fans	AC fans	•	•	•	•	•	•	•	•								
High efficiency EC fans version	EC fans									•	•	•	•	•	•	•	•
Internal electric pre-heating coil	BER-PRR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Internal electric post-heating coil	BER-POST		•				•				•				•		
Post-heating internal water coil	BCR			•				•				•				•	
Water cooling or heating coil section	SBFR				•				•				•				•
3 dampers defrosting section	RMS																
Damper actuators	SM/SMR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Kit bypass management	KBP	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Additional pressure switch for return filters	PF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Anti-freeze thermostat	ATG			•	•			•	•			•	•			•	•
Kit 2-Way valve with on-off actuator	V20			•	•			•	•			•	•			•	•
Kit 3-Way valve with modulating actuator	V3M			•	•			•	•			•	•			•	•
Purifying system Bioxigen®	BIOX	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Modbus PCB for SIGB / Q	SCMB																
Modbus PCB for RTU	Modbus RTU*	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Wall mount remote control panel	TUP																
CO2 sensor	QSC/QSA									•	•	•	•				
Humidity sensor	USD/USW	• • • •															
Kit for external installation	EXT																

* Modbus PCB for RTU Only valid for PCUSM control

		Control and regulation system																		
			In	tegrated	manager	ment sys		Integrated management system wall mount box												
Versions and optional	accessories				S	IGB								SI	GQ					
ID. Configurat	ion	1 2	3 4	5 6	7 8	9 10	0 11 1	12 13	14 15	16 1	2 3	4 5	6	7 8	9	10 11	12	13 1	4 15	16
Version with standard fans	AC fans	••	••	• •	•••					•	••	• •	•	• •						
High efficiency EC fans version	EC fans					• •	• • •		••	•					•	• •	•	• •	•	•
Internal electric pre-heating coil	BER - PRR	••	••	• •	• •	• •	• • •		••	••	• •	• •	•	• •	•	• •	•	• •	•	•
Internal electric post-heating coil	BER - POST	•		•)			(•		•		•			•				
Post-heating internal water coil	BCR		•		•		٠		•		•			•					•	
Water cooling or heating coil section	SBFR		•		•					•		•		•			•			•
3 dampers defrosting section	RMS					• •	•••		• •	•					•	• •	•	•	•	•
Damper actuators	SM/SMR	••	••	• •	••	• •	• • •		••	••	• •	• •	•	• •	•	• •	•	• •	•	•
Kit bypass management	KBP	••	••	• •	••	• • •	•••		••	••	• •	• •	•	• •	•	• •	•	• •	•	•
Additional pressure switch for return filters	PF	••	••	• •	• •	• • •	•••		••	• •	• •	• •	•	• •	•	• •	•	•	•	•
Anti-freeze thermostat	ATG		••		• •)	•		•	•	•	•		• •		•	•		•	•
Kit 2-Way valve with on-off actuator	V20		••		• •)	•		•	•	•	•		• •		•	•		•	•
Kit 3-Way valve with modulating actuator	V3M		• •		• •		•		•	•	•	•		• •					•	•
Purifying system Bioxigen®	BIOX	• •	• •	• •	• •				• •	• •	• •	• •	•	• •	•	• •		•		•
Modbus PCB for SIGB / Q	SCMB	• •	• •	• •	• •				• •	• •	• •	• •	•	• •	•	• •		•		•
Modbus PCB for RTU	Modbus RTU*																			
Wall mount remote control panel	TUP	••	• •	• •	• •				• •	• •	• •	• •	•	• •	•	• •		•		•
CO2 sensor	QSC/QSA	• •	••			• •				٠	• •	•			•	• •				
Humidity sensor	USD/USW			• •	• •			•	• •	•			•	• •				•		•
Kit for external installation	EXT									٠	• •	• •	•	• •	•	• •		•		•

* Modbus PCB for RTU Only valid for PCUSM control

Legend

	Multi speeds		Super Slim	SuperDC	Super DC Inverter		Filter cleaning monitor
	Auto swing	360°	Flusso a 360°	D	Digital Scroll	×	Catechin filter
	Lock Function		Optical detector		Inverter pump	•88 •88	Formaldehyde filter
	Timer		Hot gas valve		Class A Pump		Filter changed monitor
DCInverter	Dc Inverter	- \\	Electric heater	H	HP Scroll		Plasma Filter
₩ **	Low temperature work	*	Self-diagnosis		Shell and tube	†/ 	Self-cleaning function
	Low noise fan	HIGH EER	Hight EER		Plate	R410A	Refrigerant
	Installations view	() Wi-Fi	WiFi	×Þ	Rotary	R134A	Refrigerant
3D DC INVERTER	Three BLDC motors	8+1	Follow-me function	v.↓	DC Compressor	R4107CG	Refrigerant
HIGH COP	Hight COP	URBO	Turbo mode	ADAPTIVE V FLOATING	Working logic	R32	Refrigerant
zZ z	Sleep mode		Hydrophilic aluminium fin	E V I	EVI Scroll	Energy A A B C	Energy class
	Odor & dust sensor		Anti-rust cabinet	mm	Screw	IN ESAURIMENTO	While stock lasts
\bigcirc	On-Off		3-Way valve		Scroll Compressor	ACS tutto l'anno 365 DHW all the year	Hot water up to 40°C
=LED	Led display		Hot Sanitary Water	\bigcirc	Radial		Build-in Drain water pump
	Digital signal processing	SP	Built In Hydronic Group	\mathcal{O}^{\dots}	Variable rotation pump	Exponibile versions condensato ad acqua Water cooled available	Water condensed available
Аито	Autorestart		Reciprocating compressor	•	Silver lons & Bio Filter	Solar Ready	Solar Ready
V.415	New V415 control	Q	Recyclable material	El linetter hjedstor Technilazy	Steam injection technology	Q ₽.V. Ready	Photovoltaic predisposition

Compatible with radiant panelsand radiators

Note	

Note	

Via San Giuseppe Lavoratore, 24 - 37040 Arcole - Verona - Italy Tel. (+39) 045 7636585 - P.IVA 01209000239 info@advantixspa.it - **www.maxa.it**

All the information and scripts contained in this catalogue are exclusive property of ADVANTIX SPA. ADVANTIX SPA might have patterns, brands, copyrights or other rights of intellectual property in being or outstanding and covering certain subjects or belonging to some products shown in this catalogue. The possession of this catalogue does not imply the right to use these patterns, brands, copyright or other intellectual properties unless it is allowed by ADVANTIX SPA with a written agreement. ADVANTIX SPA does not assume responsibility for any errors or imprecision in the content of this catalog and reserves the right to make changes to its products any time without notice, according for technical or commercial market needs.